Делится ли число. Основные признаки делимости

10.10.2019

В этой статье мы рассмотрим признаки делимости чисел и как использовать признаки делимости при решении задач.

Признаки делимости чисел.

1. Признак делимости на 2 . Число делится на 2, если его запись оканчивается цифрой 0, 2, 4, 6, 8. Числа, которые делятся на 2 называются четными, соответственно, числа, которые на 2 не делятся, называются нечетными.

2. Признак делимости на 5 . Число делится на 5, если его запись оканчивается цифрой 0 или 5.

3. Признак делимости на 10 . Число делится на 10, если его запись оканчивается цифрой 0.

Вообще, если двумя последними цифрами записи числа являются нули, то число делится на 100, если три последние цифры записи числа нули, то на 1000 и т.д.

4. Признак делимости на 4 . Если две последние цифры записи числа образуют число, которое делится на 4, то исходное число делится на 4.

Например, две последние цифры числа 2116 образуют число 16, которое делится на 4, следовательно, 2116 делится на 4.

5. Признак делимости на 3 и на 9 . Если сумма цифр числа делится на 3 (соответственно на 9), то число делится на 3 (соответственно на 9).

Например, число 312 делится на 2 (последняя цифра 2) и на 3 (сумма цифр делится на 3), и, следовательно, на 6.

Вообще, если числа - взаимно простые (то есть не имеют общих делителей) и данное число делится на каждое из этих чисел, то оно делится на произведение этих чисел

6. Признак делимости на 7 . Число делится на 7, когда утроенное число десятков, сложенное с числом единиц делится на 7.

Например, число 427 делится на 7, т.к. число десятков в этом числе 42, 42х3+7=126+7=133; 133 делится на 7, т.к. число десятков в этом числе 13, 13х3+3==39+3=42.

7. Признак делимости на 11 . Число делится на 11, если модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места делится на 11, или если модуль разности равен нулю.

Например, число 12397 делится на 11, т.к. |(1+3+7)-(2+9)|=0

Чтобы установить делимость чисел, пользуются следующими признаками делимости суммы и произведения :

1. Сумма чисел делится на данное число, если каждое слагаемое суммы делится на это число.

2. Произведение чисел делится на данное число, если хотя бы один из множителей делится на это число.

Пример 1. Доказать, что число кратно 5.

Решение. Число кратно 5, если последняя цифра в записи числа равна 0 или 5.

Если число оканчивается цифрой 1, то любая степень этого числа оканчивается цифрой 1, следовательно, число оканчивается цифрой 1.

Если число оканчивается цифрой 6, то любая степень этого числа оканчивается цифрой 6, значит, число оканчивается цифрой 6.

Таким образом, разность оканчивается цифрой 5, и, следовательно, делится на 5.

Пример 2. Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

а) 1. Число делится на 2 и 5, следовательно, последняя цифра - 0

2. Числа 2, 5, 9 и 11 не имеют общих делителей, следовательно искомое число должно делиться на произведение этих чисел, то есть на 990.

Наибольшее четырехзначное число, которое делится на 990 и оканчивается на 0 - это 9900.

По условию нам надо найти число, все цифры которого различны. Предыдущее число, которое делится на 2, 5, 9 и 11 равно 9900-990=8910. Это число удовлетворяет всем условиям задачи.

Ответ: 8910

Пример 3. Использовав все цифры от 1 до 9 по одному разу, составьте наибольшее девятизначное число, делящееся на 11.

Решение. В нашем числе модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места должен делиться на 11.

Число должно быть наибольшим, поэтом цифры, стоящие на первых местах должны быть наибольшими. Пусть число имеет вид Чтобы число делилось на 11, нужно, чтобы значение выражения было кратно 11 или равно нулю.

Упростим выражение, получим:

Поскольку - это цифры, и самые большие уже задействованы, скомбинируем цифры 1, 2, 3, 4, 5 так, чтобы При этом числа в каждой группе: и должны быть расположены в порядке убывания. Подходит такая комбинация:

Ответ: 987652413

Признаками делимости пользуются при разложении числа на простые множители.

Натуральное число называется простым, если оно имеет только 2 различных делителя: единицу и само число .

Например, простыми числами являются числа 2, 3, 5, 7, 11, 13, 17 и т.д.

Внимание! Число 1 не является простым и не является составным.

Чтобы найти последовательность простых чисел, пользуются алгоритмом, который называется решето Эратосфена :

1. Выписываем ряд натуральных чисел:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...

2.Зачеркиваем числа, кратные числу 2 - каждое второе число после 2:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15, 16 , 17, 18 , 19, 20 , 21, 22 , 23, 24 , 25,...

3. Зачеркиваем числа, кратные числу 3 - каждое третье число после 3:

2, 3, 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25,...

4. Зачеркиваем числа, кратные числу 5 - каждое пятое число после 5:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25 ,...

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ,...

Основная теорема арифметики:

Любое натуральное число, большее единицы, можно представить в виде произведения простых сомножителей, причем единственным способом.

Пример 4. Разложить число 4356 на простые множители.

Решение: Применим признаки делимости. Последняя цифра записи числа - четная, разделим число на 2. Будем делить на 2, пока возможно делить нацело.

Число 1089 на 2 уже не делится, но делится на 3 (сумма цифр числа равна 18). Будем делить на 3, пока это возможно.

121 делится на 11.

Итак,

Это равенство называется разложением числа 4356 на простые множители.

Разложение на простые множители широко применяется при решении самых разных задач.

Пример 5. Сократить дробь

Разложим числитель и знаменатель на простые множители:

Пример 6. Извлечь квадратный корень:

Воспользуемся разложением числа 4356 на простые множители:

Пример 7. Найдите наименьшее натуральное число, половина которого - квадрат, треть - куб, а пятая часть - пятая степень.

Наименьшее число, удовлетворяющее этим условиям представляет из себя произведение степеней чисел 2, 3, 5.

Пусть это число имеет вид:

а) Половина числа - квадрат, следовательно, n-1, m и k - четные числа.

б) Треть числа - куб, следовательно, n, m-1 и k делятся на 3.

в) Пятая часть числа - пятая степень, следовательно, n, m и k-1 - кратны 5.

k кратно 2 и 3, следовательно k может быть равно 6 (удовлетворяет а) и б) ), 6-1 делится на 5 (удовлетворяет в) ).

n кратно 3 и 5, следовательно, n может быть равно 15 (удовлетворяет в) и б) ), 15-1 делится на 2 (удовлетворяет а) ).

m - кратно 5 и 2, следовательно, m может быть равно 10 (удовлетворяет в) и а) ), 10-1 делится на 3 (удовлетворяет б) ).

Еткарева Алина

Исследовательский учебный проект для 6 класса

Скачать:

Предварительный просмотр:

Районная научная конференция учащихся

Секция «Математика»

«Признаки делимости натуральных чисел »

Еткарева Алина,

Ученица 6 класса

ГБОУ СОШ ж.-д.ст. Погрузная

Научный руководитель:

Степанова Галина Алексеевна

учитель математики

ГБОУ СОШ ж.-д.ст. Погрузная

С. Кошки

Введение………………………………………………………………………...3

1. Глава 1. Немного истории …………………………………………….4 -5

2. Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел на 2, на 3(9) на 5, на 10, изучаемые в школе……………………………………………………………….5-6

2.2. Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно……………………………………………………..6-7

2.3. Признаки делимости на 7, 11, 12, 13, 14, 19, 37, описанные в разных источниках.............................................................................................................8-11

3.Глава 3. Применение признаков делимости натуральных чисел при решении задач...................................................................................................11-14

Заключение. …………………………………………………………..15

Список использованной литературы………………………………………16

Введение

Актуальность: При изучении темы: «Признаки делимости натуральных чисел на 2, 3, 5, 9, 10» меня заинтересовал вопрос о делимости чисел. Известно, что не всегда одно натуральное число делится на другое натуральное число без остатка. При делении натуральных чисел, мы получаем остаток, допускаем ошибки, в результате - теряем время. Признаки делимости помогают, не выполняя деления, установить, делится ли одно натуральное число на другое. Я решила написать исследовательскую работу по данной теме.

Гипотеза: Если можно определить делимость натуральных чисел на 2, 3, 5, 9, 10, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа.

Объект исследования: Делимость натуральных чисел.

Предмет исследования: Признаки делимости натуральных чисел.

Цель: Дополнить уже известные признаки делимости натуральных чисел нацело, изученные мною.

Задачи:

  1. Изучить историографию вопроса.
  2. Повторить признаки делимости на 2, 3. 5, 9, 10, изученные мною в школе.
  3. Исследовать самостоятельно признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.
  4. Изучить дополнительную литературу, подтверждающую правильность гипотезы о существовании других признаков делимости натуральных чисел и правильность выявленных мной признаков делимости.
  5. Выписать найденные из дополнительной литературы признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37.
  6. Сделать вывод.
  7. Составить слайдовую презентацию на тему: «Признаки делимости».
  8. Составить брошюру «Признаки делимости натуральных чисел».

Новизна:

В ходе выполнения проекта я пополнила свои знания о признаках делимости натуральных чисел.

Методы исследования: Сбор материала, обработка данных, наблюдение, сравнение, анализ, обобщение.

Глава 1. Немного из истории.

Признак делимости – это правило, по которому, не выполняя деления можно определить, делится ли одно натуральное число на другое. Признаки делимости всегда интересовали ученых разных стран и времен.

Признаки делимости на 2, 3, 5, 9, 10, были известны с давних времен. Признак делимости на 2 знали древние египтяне за 2 тысячи лет до нашей эры, а признаки делимости на 2, 3, 5 были обстоятельно изложены итальянским математиком Леонардо Фибоначчи (1170-1228г.г.).

При изучении темы: «Простые и составные числа» меня заинтересовал вопрос о составлении таблицы простых чисел, так как простые числа играют важную роль в изучении всех остальных чисел. Оказывается, над этим же вопросом в свое время задумался живший в 3 веке до нашей эры александрийский ученый Эратосфен. Его метод составления списка простых чисел назвали «решето Эратосфена». Пусть надо найти все простые числа до 100. Напишем подряд все числа до 100.

1 , 2, 3, 4, 5, 6, 7 , 8, 9, 10 , 11, 12 , 13, 14, 15, 16 , 17, 18 , 19, 20, 21, 22 , 23 , 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35, 36, 37 , 38, 39, 40, 41 , 42, 43, 44, 45, 46 , 47, 48, 49, 50, 51, 52 , 53, 54, 55, 56, 57, 58, 59, 60 , 61 , 62, 63, 64, 65, 66 , 67, 68, 69, 70 , 71, 72, 73, 74, 75, 76, 77, 78 , 79, 80, 81, 82 , 83 , 84, 85, 86, 87, 88 , 89, 90, 91, 92, 93, 94, 95, 96 , 97, 98, 99, 100 .

Оставив число 2, зачеркнем все остальные четные числа. Первым уцелевшим числом после 2 будет 3. Теперь, оставив число 3, зачеркнем числа, делящиеся на 3. Затем зачеркнем числа, делящиеся на 5. В результате все составные числа окажутся вычеркнутыми и останутся только простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. По этому методу можно составлять списки простых чисел, больших 100.

Вопросы делимости чисел рассматривались пифагорейцами. В теории чисел ими была проведена большая работа по типологии натуральных чисел. Пифагорейцы делили их на классы. Выделялись классы: совершенных чисел (число равное сумме своих собственных делителей, например: 6=1+2+3), дружественных чисел (каждое из которых равно сумме делителей другого, например 220 и 284: 284=1+2+4+5+10+20+11+22+44+55+110; 220=1+2+4+71+142), фигурных чисел (треугольное число, квадратное число), простых чисел и др.

Блез Паскаль Пифагор. Леонардо Пизанский Эратосфен

(Фибоначчи)

Большой вклад в изучение признаков делимости чисел внес Блез Паскаль (1623-1662г.г.). Юный Блез очень рано проявил выдающиеся математические способности, научившись считать раньше, чем читать. Вообще, его пример - это классический случай детской математической гениальности. Свой первый математический трактат «Опыт теории конических сечений» он написал в 24 года. Примерно в это же время он сконструировал механическую суммирующую машинку, прообраз арифмометра. В ранний период своего творчества (1640-1650г.г.) разносторонний ученый нашел алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, из которого следуют все частные признаки. Его признак состоит в следующем: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа a на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число.

Т.о., признаки делимости были известны с давних времен и интересовали математиков.

Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел, изучаемые в школе.

При изучении данной темы необходимо знать понятия делитель, кратное, простое и составное числа.

Делителем натурального числа а называют натуральное число b , на которое а делится без остатка.

Часто утверждение о делимости числа а на число b выражают другими равнозначными словами: а кратно b , b - делитель а , b делит а .

Простыми называются натуральные числа, которые имеют два делителя: 1 и само число. Например, числа 5,7,19 – простые, т.к. делятся на 1 и само себя.

Числа, которые имеют более двух делителей, называются составными. Например, число 14 имеет 4 делителя: 1, 2, 7, 14, значит оно составное.

Т.о…..

2.2.Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно .

Выполняя действия деления, умножения натуральных чисел, наблюдая за результатами действий, я нашла закономерности и получила следующие признаки делимости.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ;

Умножая натуральные числа на 4, я заметила, что числа, образованные из двух последних цифр числа, делятся на 4 без остатка.

Признак делимости на 4 читается так: Натуральное ч

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 : Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

216 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

Признак делимости на 8.

Умножая натуральное число на 8, я заметила такую закономерность, числа оканчиваются на три 0-ля или три последние цифры составляют число, которое делится на 8.

Значит, признак таков. Натуральное ч

Признак делимости на 15.

Заметим, что 15=3·5

Примеры:

Признак делимости на 25.

Выполняя умножение натуральных различных чисел на 25, я увидела такую закономерность: произведения оканчиваются на 00, 25, 50, 75.

Значит, натуральное число делится на 25, если оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1

Значит, натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разрядную единицу.

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей. 8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Т.о., выполняя действия с числами и подмечая закономерности, я сформулировала признаки делимости и из дополнительной литературы нашла подтверждение правильности сформулированных мною признаков делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.

2.3.Признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37, описанные в различных источниках.

Из дополнительной литературы я нашла несколько признаков делимости натуральных чисел на 7.

П ризнаки делимости на 7:

Примеры:

479345 не делится на 7, т.к. 479-345=134, 134 не делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182 делится на 7.

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230,1230 не делится на 7

аbа

Примеры:

bаа

Примеры:

ааb

Примеры:

bаа

Примеры:

Примеры:

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

6 +3· 2 +1· 3 +6=21, 21/7(6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3- ост. от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-ост. от деления 100 000 на 7; 4 -ост. от деления 10 000 на 7; 6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3-ост. от деления 10 на 7).

Признаки делимости на 11.

Пример:

2 1 3 5 7 0 4

1 3 5 2 7 3 6

Примеры:

Признак делимости на 12.

Примеры:

Признаки делимости на 13.

Примеры:

Примеры:

Признак делимости на 14.

Примеры:

Число 35882 делится на 2 и на 7, значит, оно делится на 14.

Признак делимости на 19.

Примеры:

153 4

182 4 182+4·2=190, 190/19, значит, число 1824/19.

Признаки делимости на 37 .

Пример:

Т.о., в се перечисленные признаки делимости натуральных чисел можно разделить на 4 группы:

1группа- когда делимость чисел определяется по последней(им) цифрой (ми) – это признаки делимости на 2, на 5,на разрядную единицу, на 4, на 8, на 25, на 50;

2 группа – когда делимость чисел определяется по сумме цифр числа – это признаки делимости на3, на 9, на 7(1 признак), на 11, на 37;

3 группа – когда делимость чисел определяется после выполнения каких-то действий над цифрами числа – это признаки делимости на 7, на 11, на 13, на 19;

4 группа – когда для определения делимости числа используются другие признаки делимости –это признаки делимости на 6, на12, на 14, на 15.

Глава 3. Применение признаков делимости натуральных чисел при решении задач.

Признаки делимости применяются при нахождении НОД и НОК, а также при решении текстовых задач на применении НОД и НОК.

Задача 1:

Ученики 5 класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем: 203 = 1 ∙ 7 ∙ 29.

Из практических соображений .

Ответ :

Задача 2 .

Решение:

Ответ:

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, 1/2 - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение:

Математические отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное количество детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ:

Задача 5.

Решение:

Ответ:

Задача 6. Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48 мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение:

Ответ:

Задача 7 . Дана таблица:

Ответ:

Задача 8.

Ответ:

Задача 9.

Ответ:

Т.о, мы убедились в применении признаков делимости натуральных чисел при решении задач.

Заключение.

В процессе работы я познакомилась с историей развития признаков делимости. Сама правильно сформулировала признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000., чему нашла подтверждение из дополнительной литературы. Рботая с разными источниками, я убедилась в том, что существуют другие признаки делимости натуральных чисел (на 7, 11, 12, 13, 14, 19, 37), что подтвердило правильность гипотезы о существовании других признаков делимости натуральных чисел.

Из дополнительной литературы нашла задачи, при решении которых применяются признаки делимости натуральных чисел.

Знание и использование выше перечисленных признаков делимости натуральных чисел значительно упрощает многие вычисления, экономит время; исключает вычислительные ошибки, которые можно сделать при выполнении действия деления. Следует отметить, что формулировки некоторых признаков сложноваты. Может быть, поэтому они не изучаются в школе.

Собранный мной материал я оформила в виде брошюры, которую можно использовать на занятиях математикой, на занятиях математического кружка. Учителя математики могут использовать его при изучении данной темы. Также рекомендую ознакомиться со своей работой тем сверстникам, которые хотят знать о математике больше, чем рядовой школьник.

В дальнейшем можно рассмотреть такие вопросы:

Вывод признаков делимости;

Выяснить,существуют ли еще признаки делимости, для исследования которых у меня не хватает пока знаний?

Список использованной литературы (источников):

  1. Галкин В.А. Задачи по теме «Признаки делимости ».// Математика, 1999.-№5.-С.9.
  2. Гусев В.А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 6-8 классах.- М.: Просвещение, 1984.
  3. Каплун Л.М. НОД и НОК в задачах. // Математика, 1999.- №7. – С. 4-6.
  4. Пельман Я.И. Математика – это интересно! – М.: ТЕРРА – Книжный клуб, 2006.
  5. Энциклопедический словарь юного математика./ Сост. Савин А.П. – М.: Педагогика, 1989. – С. 352.
  6. Internet

Признаки делимости

На 5.

Если число оканчивается на 0, 5.

На 2.

Если число оканчивается на 0, 2, 4, 6, 8

На 10.

Если число оканчивается на 0

На 3 (9).

Если сумма цифр числа делится на 3 (9).


Предварительный просмотр:

Ответ:

Задача 8.

Напишите какое – нибудь девятизначное число, в котором нет повторяющихся цифр (все цифры разные) и которое делится без остатка на 11. Напишите наибольшее из таких чисел, наименьшее из них.

Ответ: Наибольшее – 987652413, наименьшее – 102347586.

Задача 9.

Ваня задумал простое трехзначное число, все цифры которого различны. На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух. Приведите примеры таких чисел.

Ответ: Может оканчиваться только на цифру 7. Таких чисел 4: 167, 257, 347, 527.

Признак делимости на 2

Если натуральное число оканчивается на 2, 4, 6, 8, 0, то оно делится на 2 без остатка.

Признак делимости на 5.

Если число оканчивается на 0 или 5, то оно делится на 5 без остатка.

Признак делимости на 3

Если сумма цифр числа делится на 3, то и число делится на 3.

Примеры

684: 3, т. к. 6+ 8 + 4=18 , 18: 3, значит и число: на 3.

763 не: на3, т.к. 7+6+3=16, 16 не: на 3,значит 763 не: на 3.

Признак делимости на 9

Если сумма цифр числа делится на 9, то и само число делится на 9.

Примеры

765: 9, т. к. 7+6+5=18, 18: 9, значит 765: 9

881 не: на9, т.к. 8+8+1=17, 17 не: на 9, значит 881 не: на 9.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ; …

Натуральное ч исло делится на 4 тогда и только тогда, когда две его последние цифры 0 или образуют число, делящееся на 4.

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 :

Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

816 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

625 не делится ни на 2, ни на 3, значит, не делится на 6.

2120 делится на 2 (оканчивается 0), но не делится на 3 (2+1+2+0=5, 5 не делится на 3), значит, число не делится на 6.

279 делится на 3 (2+7+9=18, 18:3), но не делится на 2 (оканчивается нечетной цифрой), значит, число не делится на 6.

Признак делимости на 7.

Ι. Натуральное число делится на 7 тогда и только тогда, когда разность числа тысяч и числа, выражаемого последними тремя цифрами, делится на 7.

Примеры:

478009 делится на 7, т.к. 478-9=469, 469 делится на 7.

475341 не делится на 7, т.к. 475-341=134, 134 не делится на 7.

ΙΙ. Натуральное число делится на 7, если сумма удвоенного числа, стоящего до десятков и оставшегося числа делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182/7.

мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение: НОК(48, 72) = 144 (мин). 144 мин = 2 ч 24 мин.

Ответ: Через 2 ч 24 мин автобусы снова встретятся на этой же площади.

Задача 7 . Дана таблица:

В пустые клетки впишите следующие числа: 17, 22, 36, 42, 88, 48, 57, 77, 81.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное кол-во детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ: В первом классе – 34 ученика, во втором классе – 36 учеников.

Задача 5.

Какое наименьшее число одинаковых подарков можно сделать из 320 орехов, 240 конфет, 200 яблок? Сколько орехов, конфет и яблок будет в каждом подарке?

Решение: НОД(320, 240, 200) = 40 (подарков), тогда в каждом подарке будет: 320:40 = 8 (орехов); 240: 40 = 6 (конфет); 200:40 = 5 (яблок).

Ответ: В каждом подарке по 8 орехов, 6 конфет, 5 яблок.

Задача 6.

Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230, 1230 не делится на 7.

ΙΙΙ. Трехзначное натуральное число вида аbа будет делиться на 7, если а+b делится на 7.

Примеры:

252 делится на 7, т.к. 2+5=7, 7/7.

636 не делится на 7, т.к. 6+3=9, 9 не делится на 7.

IV. Трехзначное натуральное число вида bаа будет делиться на 7, если сумма цифр числа делится на 7.

Примеры:

455 делится на 7, т.к. 4+5+5=14, 14/7.

244 не делится на 7, т.к. 2+4+4=12, 12 не делится на 7.

V. Трехзначное натуральное число вида ааb будет делиться на 7, если 2а-b делится на 7.

Примеры:

882 делится на 7,т.к. 8+8-2=14, 14/7.

996 не делится на 7, т.к. 9+9-6=12, 12 не делится на 7.

VI. Четырехзначное натуральное число вида bаа , где b-двухзначное число, будет делиться на 7, если b+2а делится на 7.

Примеры:

2744 делится на 7, т.к. 27+4+4=35, 35/7.

1955 не делится на 7, т.к. 19+5+5=29, 29 не делится на 7.

VII. Натуральное число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

Примеры:

483 делится на 7, т.к. 48-3·2=42, 42/7.

564 не делится на 7, т.к. 56-4·2=48, 48 не делится на 7.

VIII. Натуральное число делится на 7 тогда и только тогда, когда сумма произведений цифр числа на соответствующие остатки получаемые при делении разрядных единиц на число 7, делится на 7.

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

1000000׃7=142857 (ост 1) и снова повторяются остатки.

Число 1316 делится на 7, т.к. 1· 6 +3· 2 +1· 3 +6=21, 21/7 (6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3- остаток от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-остаток от деления 100 000 на 7; 4 -остаток от деления 10 000 на 7; 6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3-остаток от деления 10 на 7).

Количество подарков должно быть делителем каждого из чисел, выражающих количество апельсинов, конфет и орехов, причем наибольшим из этих чисел. Поэтому надо найти НОД данных чисел. НОД (60, 175, 225) = 15. Каждый подарок будет содержать: 60: 15 = 4 – апельсина, 175: 15 = 11 – орехов и 225: 15 = 15 – конфет.

Ответ: В одном подарке – 4 апельсина, 11 орехов, 15 конфет.

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, ½ - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение: Решением задачи должно являться число, кратное числам: 7, 3, 2. Найдем сначала наименьшее из таких чисел. НОК (7, 3, 2) = 42. Можно составить выражение по условию задачи: 42 – (42: 7 + 42: 3 + 42: 2) = 1 – 1 неуспевающий.

Математические отношение отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

В двух классах вместе 70 учеников. В одном классе 7/17 учеников не явились на занятия, а в другом 2/9 получили отличные отметки по математике. Сколько учеников в каждом классе?

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей.

8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Задача 1: (Использование общих делителей и НОД)

Ученики 5 «А» класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем:

203 = 1 ∙ 7 ∙ 29.

Из практических соображений следует, что учебников не может быть 29. также число учебников не может равняться 1, т.к. в этом случае учеников было бы 203. Значит, пятиклассников – 29 и каждый из них купил по 7 учебников .

Ответ : 29 пятиклассников; 7 учебников

Задача 2 . Имеется 60 апельсинов, 165 орехов и 225 конфет. Какое наибольшее число одинаковых подарков для детей можно сделать из этого запаса? Что войдёт в каждый набор?

Решение:

Признак делимости на 8.

125·8=1 000 ; 242·8=1 936 ; 512·8=4 096 ; 600·8=4 800 ; 1234·8=9 872 ; 122875·8=983 000 ;…

Натуральное ч исло делится на 8 тогда и только тогда, когда три его последние цифры делятся 0 или составляют число, делящееся на 8.

Признаки делимости на 11.

I. Число делится на 11, если разность суммы цифр стоящих на нечетных местах, и суммы цифр, стоящих на четных местах кратна 11.

Разность может быть отрицательным числом или 0, но обязательно должна быть кратной 11. Нумерация идет слева направо.

Пример:

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

II. Натуральное число разбивают справа налево на группы по 2 цифры в каждой и складывают эти группы. Если получаемая сумма кратна 11, то испытуемое число кратно 11.

Пример: Определим, делится ли число 12561714 на 11.

Разобьем число на группы по две цифры в каждой: 12/56/17/14; 12+56+17+14=99, 99 делится на 11, значит, данное число делится на 11.

III. Трехзначное натуральное число делится на 11, если сумма боковых цифр числа равна цифре, которая в середине. Ответ будет состоять из тех самых боковых цифр.

Примеры:

594 делится на11, т.к. 5+4=9, 9-в середине.

473 делится на 11, т.к. 4+3=7, 7- в середине.

861 не делится на 11, т.к. 8+1=9, а в середине 6.

Признак делимости на 12.

Натуральное число делится на 12 тогда и только тогда, когда оно делится на 3 и 4 одновременно.

Примеры:

636 делится на 3 и на 4, значит, оно делится на 12.

587 не делится ни на 3, ни на 4, значит, оно не делится на 12.

27126 делится на 3, но не делится на 4, значит, оно не делится на 12.

Признаки делимости на 37 .

I. Натуральное число делится на 37, если сумма чисел, образованных тройками цифр данного числа в десятичной записи делится соответственно на 37.

Пример: Определим, делится ли число 100048 на 37.

100/048 100+48=148, 148 делится на 37, значит, и число делится на 37.

II. Трехзначное натуральное число, написанное одинаковыми цифрами делится на 37.

Пример:

Числа 111, 222, 333, 444, 555, …делятся на 37.

Признак делимости на 25

Натуральное число делится на 25, если оно оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1 00 , 1 50 , 2 00 , 2 50 , 3 00 ,… Они оканчиваются либо на 50, либо на 00.

Натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Объединенный признак делимости на 10, 100, 1000, …

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разряд-

ную единицу.

Признаки делимости на 13.

I. Натуральное число делится на 13, если разность числа тысяч и числа, образованного последними тремя цифрами, делится на 13.

Примеры:

Число 465400 делится на 13, т.к. 465 – 400 = 65, 65 делится на 13.

Число 256184 не делится на 13, т.к. 256 – 184 = 72, 72 не делится на 13.

II. Натуральное число делится на 13 тогда и только тогда, когда результат вычитания последней цифры, умноженной на 9, из этого числа без последней цифры, делится на 13.

Примеры:

988 делится на 13, т.к. 98 - 9·8 = 26, 26 делится на 13.

853 не делится на 13, т.к. 85 - 3·9 = 58, 58 не делится на 13.

Признак делимости на 14.

Натуральное число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7 одновременно.

Примеры:

Число 45826 делится на 2, но не делится на 7, значит, оно не делится на 14.

Число 1771 делится на 7, но не делится на 2, значит, оно не делится на 14.

Признак делимости на 15.

Заметим, что 15=3·5. Если натуральное число одновременно делится и на 5 и на 3, то оно делится на 15.

Примеры:

346725 делится на 5 (оканчивается 5) и делится на 3 (3+4+6+7+2+5=24, 24:3), значит, число делится на 15.

48732 делится на 3 (4+8+7+3+2=24, 24:3), но не делится на 5,значит, число не делится на 15.

87565 делится на 5 (оканчивается 5), но не делится на 3 (8+7+5+6+5=31, 31 не делится на 3), значит, число не делится на 15.

Признак делимости на 19.

Натуральное число делится на 19 без остатка тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, делится на 19.

Следует учесть, что число десятков в числе надо считать не цифру в разряде десятков, а общее число целых десятков во всем числе.

Примеры:

153 4 десятков-153, 4·2=8, 153+8=161, 161 не делится на 19,значит, и 1534 не делится на 19.

182 4 182+4·2=190, 190:19, значит, число 1824: 19.


ГБОУ СОШ ж.-д. ст. Погрузная

ПРИЗНАКИ ДЕЛИМОСТИ

НАТУРАЛЬНЫХ

ЧИСЕЛ


Составила Еткарева Алина.


2013 год

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.


Продолжим знакомство с признаками делимости . Сейчас мы изучим признак делимости на 6 . Сначала приведем его формулировку. Дальше рассмотрим примеры применения признака делимости на 6 . После этого докажем признак делимости на 6 . В заключение остановимся на примерах, в которых доказывается делимость на 6 значений некоторых выражений.

Навигация по странице.

Признак делимости на 6, примеры

Формулировка признака делимости на 6 объединяет в себе признак делимости на 2 и признак делимости на 3 . Она такова: если запись целого числа оканчивается одной из цифр 0 , 2 , 4 , 6 или 8 , а также сумма цифр в записи числа делится на 3 , то такое число делится на 6 ; если же нарушено хотя бы одно из указанных условий, то число не делится на 6 . Другими словами, целое число делится на 6 тогда и только тогда, когда это число делится на 2 и на 3 .

Итак, признак делимости на 6 применяется в два этапа:

  • На первом этапе проверяется делимость числа на 2 . Для этого рассматривается последняя цифра в записи числа. Если запись числа оканчивается цифрой 2 , то это число делится на 2 , и для дальнейшей проверки его делимости на 6 переходим ко второму этапу. Если же последняя цифра в записи числа отлична от 0 , 2 , 4 , 6 или 8 , то число не делится на 2 , следовательно, не делится и на 6 .
  • На втором этапе проверяется делимость числа на 3 . Для этого вычисляется сумма цифр исходного числа и проверяется, делится ли она на 3 (например, при помощи признака делимости на 3 ). Если сумма цифр делится на 3 , то число делится на 3 , и, учитывая его делимость на 2 (установленную на предыдущем этапе), можно делать вывод о делимости числа на 6 . Если же сумма цифр исходного числа не делится на 3 , то это число не делится на 3 , следовательно, не делится и на 6 .

Теперь можно рассмотреть конкретные примеры применения признака делимости на 6 .

Пример.

Делится ли число 8 813 на 6 ?

Решение.

Для ответа на поставленный вопрос воспользуемся признаком делимости на 6 . Так как запись числа 8 813 оканчивается цифрой 3 , то можно делать вывод, что число 8 813 на 6 не делится.

Ответ:

Нет.

Пример.

Возможно ли разделить 934 на 6 без остатка?

Решение.

Число 934 оканчивается цифрой 4 , поэтому первое условие признака делимости на 6 выполняется. Проверим, делится ли сумма цифр числа 934 на 3 . Имеем 9+3+4=16 , а 16 на 3 не делится. Следовательно, второе условие признака делимости на 6 не выполняется, поэтому исходное число на 6 не делится.

Ответ:

Нет.

Пример.

Делится ли число −7 269 708 на 6 ?

Решение.

Последней цифрой в записи данного числа является 8 , значит первое условие признака делимости на 6 выполнено. Теперь находим сумму цифр числа −7 269 708 , имеем 7+2+6+9+7+0+8=39 . Так как 39 делится на 3 (39:3=13 ), то можно делать вывод о делимости исходного числа на 6 .

Ответ:

Да, делится.

В заключение этого пункта отметим, что для проверки делимости заданного числа на 6 можно выполнить деление непосредственно, а не прибегать к признаку делимости на 6 .

Доказательство признака делимости на 6

Приведем доказательство признака делимости на 6 . Для удобства используем формулировку этого признака в форме необходимого и достаточного условия.

Теорема.

Для делимости целого числа a на 6 необходимо и достаточно, чтобы число a делилось на 2 и на 3 .

Доказательство.

Сначала докажем необходимость, то есть докажем, что если целое число a делится на 6 , то оно делится на 2 и на 3 .

Для этого нам понадобится следующее свойство делимости : если целое число a делится на b , то произведение m·a , где m – любое целое число, тоже делится на b .

Так как a делится на 6 , то понятие делимости позволяет нам записать равенство a=6·q , где q – некоторое целое число. В записанном произведении множитель 6 делится и на 2 и на 3 , тогда из указанного выше свойства делимости следует, что произведение 6·q делится и на 2 и на 3 . Этим доказана необходимость.

Чтобы признак делимости на 6 оказался полностью доказанным, осталось доказать достаточность. Докажем, что если целое число a делится на 2 и на 3 , то оно делится на 6 .

Здесь нам потребуется теорема из статьи основная теорема арифметики . Вот ее формулировка: если произведение нескольких целых положительных и отличных от единицы множителей делится на простое число p , то хотя бы один множитель делится на p .

Так как целое число a делится на 2 , то существует такое целое число q , что a=2·q . Но целое число a=2·q делится и на 3 , откуда 2·q должно делиться на 3 . Так как 2 на 3 не делится, то в силу указанной выше теоремы на 3 должно делиться q . Тогда существует такое целое число q 1 , что q=3·q 1 . Следовательно, a=2·q=2·3·q 1 =6·q 1 . Из полученного равенства следует делимость числа a на 6 . Этим доказана достаточность.

Другие случаи делимости на 6

В этом пункте мы остановимся на способах доказательства делимости на 6 значения заданного при указанном значении переменной. В этих случаях (когда целое число задано не в явном виде) непосредственное деление и применение признака делимости на 6 часто невозможно, поэтому нужен другой подход к решению.

Один из подходов основан на утверждении: если один из целых множителей в произведении делится на заданное число, то и все произведение делится на это число. То есть, если заданное выражение представить в виде произведения, в котором один из множителей будет делиться на 6 , то этим будет доказана делимость на 6 исходного выражения. Осталось обговорить способы представления в виде произведения.

Иногда представить заданное выражение в виде нужного произведения позволяет . Рассмотрим пример.

Пример.

Делится ли на 6 значение выражения при некотором натуральном n .

Решение.

Число 7 равно сумме 6+1 , поэтому . Теперь применим формулу бинома Ньютона, после чего проведем необходимые преобразования:

Так мы пришли к произведению, которое делится на 6 , так как оно содержит множитель 6 , а значение выражения в скобках является натуральным числом при любом натуральном n (так как сумма и произведение натуральных чисел есть натуральное число). Следовательно, значение исходного выражения при любом натуральном n делится на 6 .

Ответ:

Да.

Если выражение задано в виде многочлена, то иногда получить произведение с множителем, делящимся на 6 , позволяет . После чего переменной n в полученном разложении придаются значения n=6·m , n=6·m+1 , n=6·m+2 , …, n=6·m+5 , где m – целое число. Если будет показана делимость при каждом таком n , то этим будет доказана делимость исходного выражения на 6 при любом целом n .

Пример.

Докажите, что при любом целом n значение выражения делится на 6 .

Решение.

Разложение на множители данного выражения имеет вид .

При n=6·m имеем . В полученном произведении содержится множитель 6 , поэтому оно делится на 6 при любом целом m .

Существуют признаки, по которым иногда легко узнать, не производя деления на самом деле, делится или не делится данное число на некоторые другие числа.

Числа, которые делятся на 2, называют чётными . Число нуль тоже относится к чётным числам. Все остальные числа называют нечётными :

0, 2, 4, 6, 8, 10, 12, ... - чётные,
1, 3, 5, 7, 9, 11, 13, ... - нечётные.

Признаки делимости

Признак делимости на 2 . Число делится на 2, если его последняя цифра чётная. Например, число 4376 делится на 2, так как последняя цифра (6) - чётная.

Признак делимости на 3 . На 3 делятся только те числа, у которых сумма цифр делится на 3. Например, число 10815 делится на 3, так как сумма его цифр 1 + 0 + 8 + 1 + 5 = 15 делится на 3.

Признаки делимости на 4 . Число делится на 4, если две последние его цифры нули или образуют число, которое делится на 4. Например, число 244500 делится на 4, так как оно оканчивается двумя нулями. Числа 14708 и 7524 делятся на 4, так как две последние цифры этих чисел (08 и 24) делятся на 4.

Признаки делимости на 5 . На 5 делятся те числа, которые оканчиваются на 0 или 5. Например, число 320 делится на 5, так как последняя цифра 0.

Признак делимости на 6 . Число делится на 6, если оно делится одновременно на 2 и на 3. Например, число 912 делится на 6, так как оно делится и на 2 и на 3.

Признаки делимости на 8 . На 8 делятся те числа, у которых три последние цифры являются нулями или образуют число, которое делится на 8. Например, число 27000 делится на 8, так как оно оканчивается тремя нулями. Число 63128 делится на 8, так как три последние цифры образуют число (128), которое делится на 8.

Признак делимости на 9 . На 9 делятся только те числа, у которых сумма цифр делится на 9. Например, число 2637 делится на 9, так как сумма его цифр 2 + 6 + 3 + 7 = 18 делится на 9.

Признаки делимости на 10, 100, 1000 и т. д. На 10, 100, 1000 и так далее делятся те числа, которые оканчиваются соответственно одним нулём, двумя нулями, тремя нулями и так далее. Например, число 3800 делится на 10 и на 100.

Похожие статьи