Почему электроэнергетика. Энергетическая промышленность. Потребление электрической энергии

12.08.2020

Электроэнергетика является ключевой мировой отраслью, которая определяет технологическое развитие человечества в глобальном смысле этого слова. Данная отрасль включает в себя не только весь спектр и разнообразие методов производства (генерации) электроэнергии, но и ее транспортировку конечному потребителю в лице промышленности о всего общества в целом. Развитие электроэнергетики, ее совершенство и оптимизация, призванная удовлетворить постоянно растущий спрос на электроэнергию - это ключевая общая мировая задача современности и дальнейшего обозримого будущего.

Развитие электроэнергетики

Несмотря на то, что электричество, как некий энергетический ресурс, было известно человечеству сравнительно давно, перед его бурным стартом развития стояла серьезная проблема - отсутствие возможности передачи электричества на большие расстояния. Именно эта проблема сдерживала развитие электроэнергетики до конца восемнадцатого века. Основываясь на открытии эффективного способа электропередачи, начали развиваться и технологии, основой которых стал электрический ток. Телеграф, электромоторы, принцип электрического освещения - все это стало настоящим прорывом, который повлек за собой не только изобретение и постоянное совершенствование механических электровырабатывающих машин (генераторов), но и целых электростанций.

Одной из самых значимых вех в развитии электроэнергетики можно назвать гидроэлектростанции (ГЭС), функционирование которых основано на так называемых возобновляемых источниках энергии, которые имеют вид заранее подготовленных водных масс. На сегодняшний день данный тип электростанций является одним из самых эффективных и проверенных десятилетиями.

Отечественная история становления и развития электроэнергетики наполнена уникальными свершениями и ярчайшим контрастом дореволюционного и послереволюционного периода. И если первый из двух периодов обусловлен ничтожным объемом электрогенерации и практически полным отсутствием развития электроэнергетики как глобальной промышленной отрасли, то второй период - это настоящий и неоспоримый технологический рывок, обеспечивший в самые кротчайшие временные сроки повсеместную электрификацию, которая коснулась и множества советских фабрик и заводов, и каждого советского гражданина. Повсеместная тотальная электрификация нашей страны позволила догнать и во многих отраслях существенно перегнать в развитии технологий многие зарубежные страны, сформировав тем самым на середину двадцатого века непревзойденный промышленный потенциал. Разумеется, за рубежом электроэнергетика так же стремительно развивалась, но по своей массовости и доступности так и не сумела превзойти уровень Советского Союза.

Отрасли промышленности электроэнергетики

На сегодняшний день, электроэнергетику можно разделить на три фундаментальных технологических ветви, каждая из которых осуществляет электрогенерацию своим, уникальным способом.

Атомная энергетика

Высокотехнологичная и самая перспективная ветвь электроэнергетики, в основу которой положен процесс деления ядер атомов в специально приспособленных для этого реакторах. Тепловая энергия, образуемая при ядерном делении преобразуется в электричество.

Тепловая энергетика

Основой данной энергетики является то или иное топливо (Газ, уголь, определенные типы нефтепродуктов), которое, сгорая, трансформируется в электроэнергию.

Гидроэнергетика

Ключевым аспектом электрогенерации в данном типе энергетики является вода, которая определенным образом запасается в реках и водоемах (водохранилищах). Запасенные водные массы проходят через электрогенерирующие турбины, вырабатывая тем самым существенное количество электроэнергии.

В дополнение к этому можно отметить и так называемую альтернативную энергетику, которая, в большей части, основывается на экологически чистых ресурсах. К таким ресурсам можно отнести солнечных свет, силу ветра и геотермальные источники. Однако, альтернативная энергетика - это, прежде всего, смелый эксперимент, нежели полноценная электроэнергетическая отрасль, не обладающая требуемой эффективностью.

Электроэнергетика в России

Россия - это один из гигантов электрогенерации и передовая держава в области электроэнергетики. Передовые технологии, богатые природные ресурсы, множество быстрых полноводных рек позволили разработать и ввести в эксплуатацию современные высокоэффективных атомные электростанции и гидроэлектростанции. Постоянная разработка и совершенствование технологий привело к образованию одной из крупнейших мировых энергосетей, включающей в себя колоссальное количество вырабатываемого и потребляемого электрического тока.

Электроэнергетическая отрасль России поделена на несколько крупных энергокомпания, которые, как правило, функционируют по территориальному признаку и отвечают за свою, строго определенную долю отрасли. Основные генерационные мощности страны заключены в атомных и гидроэлектростанциях, где последние обеспечивают порядка 18-20% электроэнергии в год.

Важно отметить, что постоянно производится модернизация имеющихся и ввод в эксплуатацию новых электрогенерационных станций. На сегодняшний день, общий объем вырабатываемой электроэнергии полностью покрывает все нужны промышленности и общества, позволяя стабильно наращивать энергоэкспорт в соседние государства.

Электроэнергетика стран мира

Любое крупное государство с развитым промышленным сектором всегда будет являться очень крупным производителем и потребителем электроэнергии. Следовательно, электроэнергетика в любом из подобных государств - это стратегически важная промышленная отрасль, которая постоянно нуждается в развитии. К странам с развитой электроэнергетикой можно отнести: Россию, США, Германию, Францию, Японию, Китай, Индию и некоторые другие страны, где или прослеживается стабильно высокий уровень экономики и промышленного потенциала, или присутствует активных экономический рост.

Электроэнергетика занимается производством и передачей электроэнергии и является одной из базовых отраслей тяжелой промышленности. По производству электроэнергии Россия находится на втором месте в мире после США. Основная часть электроэнергии, производимой в России, используется промышленностью – 60 %, причем большую часть потребляет тяжелая индустрия – машиностроение, металлургии, химическая, лесная промышленность.

Отличительная особенность экономики России (аналогично тому, как и ранее СССР) – более высокая по сравнению с развитыми странами удельная энергоемкость производимого националь­ного дохода (почти в полтора раза выше, чем в США), в связи с этим крайне важно широко внедрять энергосберегающие технологии и технику. Стоит сказать, что для некоторых районов электроэнергетика является отраслью специализации, к примеру, Поволжский и Восточно-Сибирский экономические районы. На их базе возникают энергоемкие и теплоемкие производства. К примеру, Саянский ТПК (на базе Саяно-Шушенской ГЭС) специализируется в электрометаллургии: здесь сооружается Саянский алюминиевый завод, завод по обработке цветных металлов и другие предприятия.

Электроэнергетика прочно вторглась во всœе сферы деятельности человека: промышленность, сельское хозяйство, науку и космос. Это объясняется ее специфическими свойствами:

– возможностями превращаться практически во всœе другие виды энергии (тепловую, механическую, звуковую, световую и т.п.);

– способностью относительно просто передаваться на значительные расстояния в больших количествах;

– огромными скоростями протекания электромагнитных процессов;

– способностью к дроблению энергии и преобразованию ее параметров (напряжение, частота и т.д.).

Электроэнергетика представлена тепловыми, гидравлическими и атомными электростанциями.

Тепловые электростанции (ТЭС). Основной тип электро­станций в России

– тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн. кВт) ГРЭС – государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (торф, сланцы, низкокалорийные и многозольные угли). Тепловые электростанции, работающие на мазуте, располагаются преимущественно в центрах нефтеперерабатывающей промышленности.

Преимущества тепловых электростанций по сравнению с дру­гими типами электростанций:

1) относительно свободное размещение, связанное с широким распростра­нением топливных ресурсов в России;

2) способность вырабатывать электроэнергию без сезонных колебаний.

Недостатки тепловых электростанций:

1)использование невозобновляемых топливныхресурсов;

2) низкий коэффициент полезного действия;

3) крайне неблагоприятное воздействие на окружающую среду.

Тепловые электростанции всœего мира выбрасывают в атмо­сферу ежегодно 200 – 250 млн. т золы и около 60 млн. т серни­стого ангидрида; они поглощают огромное количество кислорода воздуха. К настоящему времени установлено, что и радиоак­тивный фон вокруг тепловых электростанций, работаю­щих на угле, в среднем в 100 раз выше, чем вблизи АЭС такой же мощности, так как обычный уголь в качестве микропримесей почти всœегда содержит уран-238, торий-232 и радиоактивный изотоп углерода. ТЭС нашей страны в отличие от зарубежных до сих пор не оснащены достаточно эффектив­ными системами очистки отходящих газов от оксидов серы и азота. Правда, ТЭС на природном газе экологиче­ски чище угольных, мазутных и сланцевых, но огромный эко­логический вред наносит природе прокладка газопроводов, особенно в северных районах.

Несмотря на отмеченные недостатки, в ближайшей пер­спективе доля ТЭС в приросте производства электроэнергии может составить 78 – 88%. Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута.

Гидравлические электростанции (ГЭС). Гидравлические станции занимают второе место по количеству вырабатываемой электроэнергии, доля которой в общем объёме производства составляет 16,5%.

ГЭС можно разделить на две основные группы: ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и из­меняют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, кото­рые раньше выносились реками, накапливаются в водохрани­лищах, приходится применять специальные меры для промыв­ки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для созда­ния нормального судоходства и орошения это крайне важно.

Наиболее мощные ГЭС построены в Сибири, и себестоимость электроэнергии в 4 – 5 раз меньше, чем в европейской части страны. Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - ϶ᴛᴏ группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре. В европейской части страны создан крупный каскад ГЭС на Волге, в состав которого входят Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская, Саратовская электростанции. В перспективе электроэнергию ГЭС Ангаро-Енисейского каскада планируется использовать совместно с электроэнергией Канско-Ачинского энергетического комплекса в остродефицитных по топливу районах европейской части страны, Забайкалья и Дальнего Востока.

Вместе с тем, планируется создание энергомостов в страны Западной Европы, СНГ, Монголию, Китай, Корею.

К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, осо­бенно пойменных, нарушению экологического равновесия.

Преимущества гидроэлектростанций :

1) использование возоб­новляемых ресурсов;

2) простота управления (количество персонала на ГЭС в 15 – 20 раз

меньше, чем на ГРЭС);

3) высокий коэффициент полезного действия (более 80 %).

4) высокая маневренность, ᴛ.ᴇ. возможность практически мгновенного

ав­томатического запуска и отключения любого требуемого количества агрегатов.

По указанным причинам производимая на ГЭС энергия – самая дешевая.

Недостатки гидроэлектростанций:

1) длительные сроки строительства ГЭС;

2) требуются большие удельные капиталовложения;

3) неблагоприятное воздействие на окружающую среду, так как

строительство ГЭС ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству.

Атомные электростанции. Доля АЭС в суммарной выработке электроэнергии в России составляет около 12 % . При этом в США – 19,6 %, в ФРГ– 34 %, в Бельгии – 65 %, во Франции – свыше 76 %. Планировалось довести удельный вес АЭС в про­изводстве электроэнергии в СССР в 1990 до 20 %, однако Чернобыльская ка­тастрофа вызвала сокращение программы атомного строи­тельства.

Сейчас в России действуют 9 АЭС, еще 14 АЭС находятся в стадии проектирования, строительства или временно законсервированы. Сегодня введена практика международной экспертизы проектов и действующих АЭС. После аварии были пересмотрены принципы размещения АЭС. В первую очередь теперь учитываются следующие факторы: потребность района в электроэнергии, природные условия, плотность населœения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод.

Новым в атомной энергетике является создание атомных станций, на которых производится как электрическая, так и тепловая энергия, а также станций, где производят только тепловую энергию.

Преимущества АЭС :

1)возможно строительство АЭС в любом районе, независимо от его

энергетических ресурсов;

2) для работы не требуется кислород воздуха;

3) высокая концентрация энергии в ядерном топливе;

4) отсутствие выбросов в атмосферу.

Недостатки АЭС:

1) работа АЭС сопровождается рядом негативных последствий для

окружающей природной среды: возникают захоронения радиоактивных отходов, происходит тепловое загрязнение используемых атомными станциями водоемов;

2) возможны катастрофические последствия аварий на АЭС.

Для более экономичного, рационального и комплексного использования общего потенциала электростанций нашей страны создана Единая энергетическая система (ЕЭС), в которой работают свыше 700 крупных электростанций. Управление ЕЭС осуществляется из единого центра, оснащенного электронно-вычислительной техникой. Создание Единой энергосистемы значительно повышает надежность снабжения электроэнергией народного хозяйства.

В Российской Федерации разработана и принята энергетическая стратегия

на период до 2020 года. Высшим приоритетом энергетической стратегии является повышение эффективности энергопотребления и энергосбере­жения. В соответствии с этим основные задачи развития электроэнергетикиРоссии на ближайшую перспективу таковы:

1. Снижение энергоемкости производств за счёт внедрения новых технологий;

2. Сохранение единой энергосистемы России; 3. Повышение коэффициента используемой мощности электростанций;

4. Полный переход к рыночным отношениям, освобождение цен на энергоносители, переход на мировые цены;

5. Скорейшее обновление парка электростанций;

6. Приведение экологических параметров электростанций к уровню мировых стандартов.

Электроэнергетика - понятие и виды. Классификация и особенности категории "Электроэнергетика" 2017, 2018.

Лидирующее положение теплоэнергетики является исторически сложившейся и экономически оправданной закономерностью развития российской энергетики.

Тепловые электростанции (ТЭС), действующие на территории России, можно классифицировать по следующим признакам:

§ по источникам используемой энергии -- органическое топливо, геотермальная энергия, солнечная энергия;

§ по виду выдаваемой энергии -- конденсационные, теплофикационные;

§ по использованию установленной электрической мощности и участию ТЭС в покрытии графика электрической нагрузки -- базовые (не менее 5000 ч использования установленной электрической мощности в году), полупиковые или маневренные (соответственно 3000 и 4000 ч в году), пиковые (менее 1500--2000 ч в году).

В свою очередь, тепловые электростанции, работающие на органическом топливе, различаются по технологическому признаку:

§ паротурбинные (с паросиловыми установками на всех видах органического топлива: угле, мазуте, газе, торфе, сланцах, дровах и древесных отходах, продуктах энергетической переработки топлива и т. д.);

§ дизельные;

§ газотурбинные;

§ парогазовые.

Наибольшее развитие и распространение в России получили тепловые электростанции общего пользования, работающие на органическом топливе (газ, уголь), преимущественно паротурбинные.

Самой большой ТЭС на территории России является крупнейшая на Евразийском континенте Сургутская ГРЭС-2 (5600 МВт), работающая на природном газе (ГРЭС -- аббревиатура, сохранившаяся с советских времен, означает государственную районную электростанцию). Из электростанций, работающих на угле, наибольшая установленная мощность у Рефтинской ГРЭС (3800 МВт). К крупнейшим российским ТЭС относятся также Сургутская ГРЭС-1 и Костромская ГРЭС, мощностью свыше 3 тыс. МВт каждая.

В процессе реформы отрасли крупнейшие тепловые электростанции России были объединены в оптовые генерирующие компании (ОГК) и территориальные генерирующие компании (ТГК) .

В настоящий момент основной задачей развития тепловой генерации является обеспечение технического перевооружения и реконструкции действующих электростанций, а также ввод новых генерирующих мощностей с использованием передовых технологий в производстве электроэнергии.

Гидроэнергетика

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной надежности Единой Энергосистемы страны, располагая более 90 % резерва регулировочной мощности. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными и способны при необходимости быстро существенно увеличить объемы выработки, покрывая пиковые нагрузки.

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. На территории России сосредоточено около 9 % мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду. В настоящее время общий теоретический гидроэнергопотенциал России определён в 2900 млрд кВт*ч годовой выработки электроэнергии или 170 тыс. кВт*ч на 1 кв. км территории. Однако сейчас освоено лишь 20 % этого потенциала. Одним из препятствий развития гидроэнергетики является удалённость основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии.

Рисунок 1 Производство электроэнергии гидроэлектростанциями России (в млрд кВт ч) и мощность гидроэлектростанций России (в ГВт) в 1991--2010 годах

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива, потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жёстких требований по ограничению выбросов парниковых газов. Кроме своего прямого назначения -- производства электроэнергии с использованием возобновляемых ресурсов -- гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения.

В настоящее время на территории России работают 102 гидроэлектростанции мощностью свыше 100 МВт. Общая установленная мощность гидроагрегатов на ГЭС в России составляет примерно 46 ГВт (5 место в мире). В 2011 году российскими гидроэлектростанциями выработано 153 млрд кВт*ч электроэнергии. В общем объёме производства электроэнергии в России доля ГЭС в 2011 году составила 15,2 % .

В ходе реформы электроэнергетики была создана федеральная гидрогенерирующая компания ОАО «ГидроОГК» (текущее название -- ОАО «РусГидро»), которая объединила основную часть гидроэнергетических активов страны. Сегодня компания управляет 68 объектами возобновляемой энергетики, в том числе 9 станциями Волжско-Камского каскада общей установленной мощностью более 10,2 ГВт, первенцем большой гидроэнергетики на Дальнем Востоке -- Зейской ГЭС (1 330 МВт), Бурейской ГЭС (2 010 МВт), Новосибирской ГЭС (455 МВт) и несколькими десятками гидростанций на Северном Кавказе, в том числе Кашхатау ГЭС (65,1 МВт), введённой в эксплуатацию в Кабардино-Балкарской Республике в конце 2010 года. Также в состав РусГидро входят геотермальные станции на Камчатке и высокоманевренные мощности Загорской гидроаккумулирующей электростанции (ГАЭС) в Московской области, используемые для выравнивания суточной неравномерности графика электрической нагрузки в ОЭС Центра.

До недавнего времени крупнейшей российской гидроэлектростанцией считалась Саяно-Шушенская ГЭС им. П. С. Непорожнего мощностью 6721 МВт (Хакасия). Однако после аварии 17 августа 2009 года её мощности частично выбыли из строя. В настоящее время полным ходом ведутся восстановительные работы, которые предполагается завершить полностью к 2014 году. 24 февраля 2010 года состоялось включение в сеть под нагрузку гидроагрегата № 6 мощностью 640 МВт, в декабре 2011 года был введён в работу гидроагрегат № 1. На сегодняшний день в работе находятся ГА № 1, 3, 4, 5 с суммарной мощностью 2560 МВт. Вторая по установленной мощности гидроэлектростанция России -- Красноярская ГЭС.

Перспективное развитие гидроэнергетики России связывают с освоением потенциала рек Северного Кавказа (строятся Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС; в планах -- вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, а также развитие малой гидроэнергетики в Северной Осетии и Дагестане), Сибири (достройка Богучанской, Вилюйской-III и Усть-Среднеканской ГЭС, проектирование Южно-Якутского ГЭК и Эвенкийской ГЭС), дальнейшим развитием гидроэнергетического комплекса в центре и на севере Европейской части России, в Приволжье, строительством выравнивающих мощностей в основных потребляющих регионах (в частности -- строительство Ленинградской и Загорской ГАЭС-2).

Атомная энергетика. Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии. На сегодняшний день в России эксплуатируется 10 атомных электростанций (АЭС) -- в общей сложности 33 энергоблока установленной мощностью 23,2 ГВт, которые вырабатывают около 17 % всего производимого электричества. В стадии строительства -- ещё 5 АЭС .

Широкое развитие атомная энергетика получила в европейской части России (30 %) и на Северо-Западе (37 % от общего объёма выработки электроэнергии).


Рисунок 2 Производство электроэнергии АЭС России (в млрд кВт ч) и мощность АЭС России (в ГВт) в 1991--2010 годах

электроэнергетика пространственный альтернативный отрасль

В 2011 году атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии -- 173 млрд кВт*ч, что составило около 1,5 % прироста по сравнению с 2010 годом. В декабре 2007 года в соответствии с указом президента России В. В. Путина была образована Государственная корпорация по атомной энергии «Росатом», которая управляет всеми ядерными активами России, включая как гражданскую часть атомной отрасли, так и ядерный оружейный комплекс. На неё также возложены задачи по выполнению международных обязательств России в области мирного использования атомной энергии и режима нераспространения ядерных материалов.

Оператор российских АЭС -- ОАО «Концерн Росэнергоатом» -- является второй в Европе энергетической компанией по объёму атомной генерации. АЭС России вносят заметный вклад в борьбу с глобальным потеплением. Благодаря их работе ежегодно предотвращается выброс в атмосферу 210 млн тонн углекислого газа. Приоритетом эксплуатации АЭС является безопасность. С 2004 года на российских АЭС не зафиксировано ни одного серьёзного нарушения безопасности, классифицируемых по международной шкале ИНЕС выше нулевого (минимального) уровня. Важной задачей в сфере эксплуатации российских АЭС является повышение коэффициента использования установленной мощности (КИУМ) уже работающих станций. Планируется, что в результате выполнения программы повышения КИУМ ОАО «Концерн Росэнергоатом», рассчитанной до 2015 года, будет получен эффект, равноценный вводу в эксплуатацию четырёх новых атомных энергоблоков (эквивалент 4,5 ГВт установленной мощности).

Геотермальная энергетика

Одним из потенциальных направлений развития электроэнергетики в России является геотермальная энергетика. В настоящее время в России разведано 56 месторождений термальных вод с потенциалом, превышающим 300 тыс. м/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкессия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край). При этом суммарный электроэнергетический потенциал пароводных терм, который оценивается в 1 ГВт рабочей электрической мощности, реализован только в размере чуть более 80 МВт установленной мощности. Все действующие российские геотермальные электростанции сегодня расположены на территории Камчатки и Курил .

Электроэнергетика является базовой инфраструктурной отраслью, обеспечивающей внутренние потребности народного хозяйства и населения в электроэнергии, а также экспорт в страны ближнего и дальнего зарубежья. От её функционирования зависят состояние систем жизнеобеспечения и развитие экономики России.

Значение электроэнергетики велико, так как она является базовой отраслью экономики России, благодаря ее существенному вкладу в социальную стабильность общества и конкурентоспособность промышленности, включая энергоемкие отрасли. Строительство новых мощностей по выплавке алюминия в основном привязано к гидроэлектростанциям. Также в энергоемкий сектор входит черная металлургия, нефтехимия, строительство и т.д.

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики.. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Производственная база электроэнергетики представлена комплексом энергетических объектов: электростанций, подстанций, котельных, электрических и тепловых сетей, обеспечивающих совместно с другими предприятиями, а также строительными и монтажными организациями, НИИ, проектными институтами - функционирование и развитие электроэнергетики.

Электрификация производственных и бытовых процессов означает использование электроэнергии во всех сферах человеческой деятельности. Приоритет электроэнергии как энергоносителя и эффективность электрификации объясняется следующими преимуществами электроэнергии по сравнению с другими видами энергоносителей:

  • · Возможность концентрации электрической мощности и производства электроэнергии на крупных блоках и электростанциях, что снижает капитальные затраты в строительство нескольких мелких электростанций;
  • · Возможностью деления потока мощности и энергии на меньшие количества;
  • · Легкой трансформации электроэнергии в другие виды энергии - световую, механическую, электрохимическую, тепловую;
  • · Возможностью быстрой и с малыми потерями передачи мощности и энергии на большие расстояния, что позволяет рационально использовать источники энергии, удаленные от центров энергопотребления;
  • · Экологической чистотой электроэнергии как энергоносителя и в результате - улучшением экологической обстановки в районе размещения потребителей энергии;
  • · Электрификация способствует повышению уровня автоматизации производственных процессов, росту производительности труда, повышению качества продукции и снижению ее себестоимости.

С учетом перечисленных достоинств электроэнергия является идеальным энергоносителем, обеспечивающим совершенствование технологических процессов, повышение качества продукции, рост технической вооруженности и производительности труда в производственных процессах, улучшение бытовых условий населения.

Электроэнергетика – это одна из ведущих отраслей энергетики, в которую входит сбыт, передача и производство электроэнергии. Данная отрасль энергетики считается важной, так как у нее большие преимущества относительно других видов энергии, а именно: распределение между потребителями, ее легко транспортировать на большие расстояния и превращать в другую энергию (тепловую, механическую, световую, химическую и др.). Отличительная черта электрической энергии – это ее одновременность в генерации и потреблении энергии, так как по сетям электрический ток распространяется почти со скоростью света.

Генерация электроэнергии. Это процесс, при котором различные виды энергии преобразовываются в электрическую энергию. Это происходит на электростанциях. На данный период существуют несколько видов:

  1. Тепловая электроэнергетика. Принцип таков – энергия сгорания (тепловая) органических топлив превращается в электрическую энергию. В тепловую электроэнергетику входят тепловые электростанции – конденсационные и теплофикационные.
  2. Ядерная энергетика. В нее входят атомные электростанции. Принцип вырабатывания электроэнергии схож с вырабатыванием энергии на тепловых электростанциях. Отличие в то, что тепловая энергия получается при делении атомных ядер в реакторе, а не при сжигании топлива.
  3. Гидроэнергетика . К этому виду вырабатывания энергии относятся гидроэлектростанции. Здесь энергия течения воды (кинетическая) преобразуется в электроэнергию. С помощью плотин создается искусственный перепад уровней поверхности на реках. Под действием силы тяжести, вода из верхнего бьефа переливается по специальным протокам в нижний отсек. В протоках находятся водяные турбины, их лопасти раскручивает водяной поток.

Морские течения на много мощнее течений рек всего мира, поэтому в данное время идет работа над созданием морских гидроэлектростанций.

  1. Альтернативная энергетика . Сюда относятся типы генерации электроэнергии, которые имеют ряд достоинств, по отношению к традиционным, но по некоторым причинам они не получили достаточного распространения. Основные виды альтернативной энергетики:

Ветроэнергетика – чтобы получить электроэнергию, используют кинетическую энергию ветра.

Гелиоэнергетика – электрическую энергию получают из энергии солнечных лучей.

Недостаток этих видов альтернативной энергии в том, что они маломощные, а генераторы дорогие.

  1. Геотермальная энергетика . Здесь используют естественное тепло Земли, чтобы выработать электроэнергию. Геотермальные станции – это обычные ТЭС, где ядерный реактор и котел – это источник тепла для нагрева.

Также к видам генерации относятся: приливная энергетика, водородная энергетика и волновая энергетика.

Передача электроэнергии от электростанций к потребителям выполняется с помощью электрических сетей. Если смотреть с технической стороны, то электрическая сеть – это совокупность трансформаторов, которые расположены на подстанциях и линий электропередач.

Похожие статьи