Что такое глюкоза и зачем она нужна? Глюкоза – основное топливо организма

30.09.2019

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Тамбовский государственный университет имени Г.Р. Державина

на тему: Биологическая роль глюкозы в организме

Выполнил:

Шамсидинов Шохиёржон Фазлиддин угли

Тамбов 2016

1. Глюкоза

1.1 Свойства и функции

2.1 Катаболизм глюкозы

2.4 Синтез глюкозы в печени

2.5 Синтез глюкозы из лактата

Использованные литературы

1. Глюкоза

1.1 Свойства и функции

Глюкомза (от др.-греч. глхкэт сладкий) (C 6 H 12 O 6), или виноградный сахар, или декстроза, встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Является моносахаридом и шестиатомным сахаром (гексозой). Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном тракте быстро расщепляются на глюкозу и фруктозу.

Глюкоза относится к группе гексоз, может существовать в виде б-глюкозы или в-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у б-глюкозы гидроксильная группа расположена под плоскостью кольца, а у в-глюкозы -- над плоскостью.

Глюкоза является бифункциональным соединением, т.к. содержит функциональные группы - одну альдегидную и 5 гидроксильных. Таким образом, глюкоза - многоатомный альдегидоспирт.

Структурная формула глюкозы имеет вид:

Сокращенная формула

1.2 Химические свойства и строение глюкозы

Экспериментально установлено, что в молекуле глюкозы присутствуют альдегидная и гидроксильная группы. В результате взаимодействия карбонильной группы с одной из гидроксильных глюкоза может существовать в двух формах: открытой цепной и циклической.

В растворе глюкозы эти формы находятся в равновесии друг с другом.

Например, в водном растворе глюкозы существуют следующие структуры:

Циклические б- и в-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца. В б-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН 2 ОН, в в-глюкозе - в цис-положении. С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

В твёрдом состоянии глюкоза имеет циклическое строение. Обычная кристаллическая глюкоза - это б- форма. В растворе более устойчива в-форма (при установившемся равновесии на неё приходится более 60% молекул). Доля альдегидной формы в равновесии незначительна. Это объясняет отсутствие взаимодействия с фуксинсернистой кислотой (качественная реакция альдегидов).

Для глюкозы кроме явления таутомерии характерны структурная изомерия с кетонами (глюкоза и фруктоза - структурные межклассовые изомеры)

Химические свойства глюкозы:

Глюкоза обладает химическими свойствами, характерными для спиртов и альдегидов. Кроме того, она обладает и некоторыми специфическими свойствами.

1. Глюкоза - многоатомный спирт.

Глюкоза с Cu(OH) 2 даёт раствор синего цвета (глюконат меди)

2. Глюкоза - альдегид.

а) Реагирует с аммиачным раствором оксидом серебра с образованием серебряного зеркала:

СН 2 ОН-(СНОН) 4 -СНО+Ag 2 O > СН 2 ОН-(СНОН) 4 -СОOH + 2Ag

глюконовая кислота

б) С гидроксидом меди даёт красный осадок Cu 2 O

СН 2 ОН-(СНОН) 4 -СНО + 2Cu(OH) 2 > СН 2 ОН-(СНОН) 4 -СОOH + Cu 2 Ov + 2H 2 O

глюконовая кислота

в) Восстанавливается водородом с образованием шестиатомного спирта (сорбита)

СН 2 ОН-(СНОН) 4 -СНО + H 2 > СН 2 ОН-(СНОН) 4 -СH 2 OH

3. Брожение

а) Спиртовое брожение (для получения спиртных напитков)

С 6 H 12 O 6 > 2СH 3 -CH 2 OH + 2CO 2 ^

этиловый спирт

б) Молочнокислое брожение (скисание молока, квашение овощей)

C 6 H 12 O 6 > 2CH 3 -CHOH-COOH

молочная кислота

1.3 Биологическое значение глюкозы

Глюкоза - необходимый компонент пищи, один из главных участников обмена веществ в организме, очень питательна и легко усваивается. При её окислении выделяется больше трети используемой в организме энергий ресурс - жиры, но роль жиров и глюкозы в энергетике разных органов различна. Сердце в качестве топлива используется жирные кислоты. Скелетным мышцам глюкоза нужна для “запуска”, а вот нервные клетки, в том числе и клетки головного мозга работают только на глюкозе. Их потребность составляет 20-30% вырабатываемой энергии. Нервным клеткам энергия нужна каждую секунду, а глюкозу организм получает при приёме пищи. Глюкоза легко усваивается организмом, поэтому ее используют в медицине в качестве укрепляющего лечебного средства. Специфические олигосахариды определяют группу крови. В кондитерском деле для изготовления мармелада, карамели, пряников и т.д. Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, также как и при силосовании кормов. На практике используется и спиртовое брожение глюкозы, например, при производстве пива. Целлюлоза - исходное вещество для получения шелка, ваты, бумаги.

Углеводы действительно самые распространенные органические вещества на Земле, без которых невозможно существование живых организмов.

В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:

C 6 H 12 O 6 +6O 2 ??? 6CO 2 +6H 2 O+2920кДж

2. Биологическая роль глюкозы в организме

Глюкоза -- основной продукт фотосинтеза, образуется в цикле Кальвина. В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов.

2.1 Катаболизм глюкозы

Катаболизм глюкозы является основным поставщиком энергии для процессов жизнедеятельности организма.

Аэробный распад глюкозы -- это предельное ее окисление до CO 2 и H 2 O. Этот процесс, являющийся основным путем катаболизма глюкозы у аэробных организмов, может быть выражен следующим суммарным уравнением:

С 6 Н 12 О 6 + 6О 2 > 6СО 2 + 6Н 2 О + 2820 кДж/моль

Аэробный распад глюкозы включает несколько стадий:

* аэробный гликолиз -- процесс окисления глюкозы с образованием двух молекул пирувата;

* общий путь катаболизма, включающий превращение пирувата в ацетил-СоА и его дальнейшее окисление в цитратном цикле;

* цепь переноса электронов на кислород, сопряженная с реакциями дегидрирования, происходящими в процессе распада глюкозы.

В определённых ситуациях обеспечение кислородом тканей может не соответствовать их потребностям. Например, на начальных стадиях интенсивной мышечной работы при стрессе сердечные сокращения могут не достигать нужной частоты, а потребности мышц в кислороде для аэробного распада глюкозы велики. В подобных случаях включается процесс, который протекает без кислорода и заканчивается образованием лактата из пировиноградной кислоты.

Этот процесс называют анаэробным распадом, или анаэробным гликолизом. Анаэробный распад глюкозы энергетически малоэффективен, но именно этот процесс может стать единственным источником энергии для мышечной клетки в описанной ситуации. В даньнейшем, когда снабжение мышц кислородом будет достаточным в результате перехода сердца на ускоренный ритм, анаэробный распад переключается на аэробный.

Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.

1. Этапы аэробного гликолиза

В аэробном гликолизе можно выделить 2 этапа.

1. Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ.

2. Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ.

2. Реакции аэробного гликолиза

Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата

Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.

Пути катаболизма глюкозы. 1 - аэробный гликолиз; 2, 3 - общий путь катаболизма; 4 - аэробный распад глюкозы; 5 - анаэробный распад глюкозы (в рамке); 2 (в кружке) - стехиометрический коэффициент.

Превращение глюкозо-6-фосфата в триозофосфаты.

Превращение глицеральдегид-3-фосфата в 3-фосфоглицерат.

Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3-фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. Глицеральдегид- 3 -фосфатдегидрогеназа содержит в активном центре остаток цистеина, сульфгидрильная группа которого принимает непосредственное участие в катализе. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н 3 РО 4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении 1. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ

Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетический фосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места).

Превращение 3-фосфоглицерата в пируват.

3. Окисление цитоплазматического NADH в митохондриалъной дыхательной цепи. Челночные системы

NADH, образующийся при окислении глицеральдегид-3-фосфата в аэробном гликолизе, подвергается окислению путём переноса атомов водорода в митохондриальную дыхательную цепь. Однако цитозольный NADH не способен передавать водород на дыхательную цепь, потому что митоховдриальная мембрана для него непроницаема. Перенос водорода через мембрану происходит с помощью специальных систем, называемых "челночными". В этих системах водород транспортируется через мембрану при участии пар субстратов, связанных соответствующими дегидрогеназами, т.е. с обеих сторон митохондри-альной мембраны находится специфическая дегидрогеназа. Известны 2 челночные системы. В первой из этих систем водород от NADH в цитозоле передаётся на дигидроксиацетонфосфат ферментом глицерол-3-фосфатдегидрогеназой (NAD-зависимый фермент, назван по обратной реакции). Образованный в ходе этой реакции глицерол-3-фосфат, окисляется далее ферментом внутренней мембраны митохондрий - глицерол-3-фосфатдегидрогеназой (FAD-зависимым ферментом). Затем протоны и электроны с FADH 2 переходят на убихинон и далее по ЦПЭ.

Глицеролфосфатная челночная система работает в клетках белых мышц и гепатоцитов. Однако в клетках сердечных мышц митохондриальная глицерол-3-фосфатдегидрогеназа отсутствует. Вторая челночная система, в которой участвуют малат, цитозольная и митоховдриальная малат-дегидрогеназы, является более универсальной. В цитоплазме NADH восстанавливает оксалоа-цетат в малат, который при участии переносчика проходит в митохондрии, где окисляется в оксалоацетат NAD-зависимой маЛатдегидрогеназой (реакция 2). Восстановленный в ходе этой реакции NAD отдаёт водород в митоховдриальную ЦПЭ. Однако образованный из малата оксалоацетат выйти самостоятельно из митохондрий в цитозоль не может, так как мембрана митохондрий для него непроницаема. Поэтому оксалоацетат превращается в аспартат, который и транспортируется в цитозоль, где снова превращается в оксалоацетат. Превращения оксалоацетата в аспартат и обратно связаны с присоединением и отщеплением аминогруппы. Эта челночная система называется малат-аспартатной. Результат её работы - регенерация цитоплазматического NAD+ из NADH.

Обе челночные системы существенно отличаются по количеству синтезированного АТФ. В первой системе соотношение Р/О равно 2, так как водород вводится в ЦПЭ на уровне KoQ. Вторая система энергетически более эффективна, так как передаёт водород в ЦПЭ через митохондриальный NAD+ и соотношение Р/О близко к 3.

4. Баланс АТФ при аэробном гликолизе и распаде глюкозы до СО 2 и Н 2 О.

Выход АТФ при аэробном гликолизе

На образование фруктозо-1,6-бисфосфата из одной молекулы глюкозы требуется 2 молекулы АТФ. Реакции, связанные с синтезом АТФ, происходят после распада глюкозы на 2 молекулы фосфотриозы, т.е. на втором этапе гликолиза. На этом этапе происходят 2 реакции субстратного фосфорилирования и синтезируются 2 молекулы АТФ. Кроме того, одна молекула глицеральдегид-3-фосфата дегидрируется (реакция 6), a NADH передаёт водород в митохондриальную ЦПЭ, где синтезируется 3 молекулы АТФ путём окислительного фосфорилирования. В данном случае количество АТФ (3 или 2) зависит от типа челночной системы. Следовательно, окисление до пирувата одной молекулы глицеральдегид-3-фосфата сопряжено с синтезом 5 молекул АТФ. Учитывая, что из глюкозы образуются 2 молекулы фосфотриозы, полученную величину нужно умножить на 2 и затем вычесть 2 молекулы АТФ, затраченные на первом этапе. Таким образом, выход АТФ при аэробном гликолизе составляет (5Ч2) - 2 = 8 АТФ.

Выход АТФ при аэробном распаде глюкозы до конечных продуктов в результате гликолиза образуется пируват, который далее окисляется до СО 2 и Н 2 О в ОПК. Теперь можно оценить энергетическую эффективность гликолиза и ОПК, которые вместе составляют процесс аэробного распада глюкозы до конечных продуктов Таким образом, выход АТФ при окислении 1 моль глюкозы до СО 2 и Н 2 О составляет 38 моль АТФ. В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Одна из них протекает в гликолизе и 5 в ОПК.Субстраты для специфических NAD-зависимых дегидрогеназ: глицеральдегид-3-фосфат, жируват, изоцитрат, б-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием кофермента FAD. Общее количество АТФ, синтезированное путём окислительного фофорилирования, составляет 17 моль АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 моль АТФ, синтезированных путём субстратного фосфорилирования (две реакции в гликолизе и одна в цитратном цикле).Учитывая, что глюкоза распадается на 2 фос-фотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 моль АТФ, использованные на первом этапе гликолиза.

Анаэробный распад глюкозы (анаэробный гликолиз).

Анаэробным гликолизом называют процесс расщепления глюкозы с образованием в качестве конечного продукта лактата. Этот процесс протекает без использования кислорода и поэтому не зависит от работы митохондриальной дыхательной цепи. АТФ образуется за счёт реакций субстратного фосфорилирования. Суммарное уравнение процесса:

С 6 Н 12 0 6 + 2 Н 3 Р0 4 + 2 АДФ = 2 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 O.

Анаэробный гликолиз.

При анаэробном гликолизе в цитозоле протекают все 10 реакций, идентичных аэробному гликолизу. Лишь 11-я реакция, где происходит восстановление пирувата цитозольным NADH, является специфической для анаэробного гликолиза. Восстановление пирувата в лактат катализирует лактатдегидро-геназа (реакция обратимая, и фермент назван по обратной реакции). С помощью этой реакции обеспечивается регенерация NAD+ из NADH без участия митохондриальной дыхательной цепи в ситуациях, связанных с недостаточным снабжением клеток кислородом.

2.2 Значение катаболизма глюкозы

Основное физиологическое назначение катаболизма глюкозы заключается в использовании энергии, освобождающейся в этом процессе для синтеза АТФ

Аэробный распад глюкозы происходит во многих органах и тканях и служит основным, хотя и не единственным, источником энергии для жизнедеятельности. Некоторые ткани находятся в наибольшей зависимости от катаболизма глюкозы как источника энергии. Например, клетки мозга расходуют до 100 г глюкозы в сутки, окисляя её аэробным путём. Поэтому недостаточное снабжение мозга глюкозой или гипоксия проявляются симптомами, свидетельствующими о нарушении функций мозга (головокружения, судороги, потеря сознания).

Анаэробный распад глюкозы происходит в мышцах, в первые минуты мышечной работы, в эритроцитах (в которых отсутствуют митохондрии), а также в разных органах в условиях ограниченного снабжении их кислородом, в том числе в клетках опухолей. Для метаболизма клеток опухолей характерно ускорение как аэробного, так и анаэробного гликолиза. Но преимущественный анаэробный гликолиз и увеличение синтеза лактата служит показателем повышенной скорости деления клеток при недостаточной обеспеченности их системой кровеносных сосудов.

Кроме энергетической функции, процесс катаболизма глюкозы может выполнять и анаболические функции. Метаболиты гликолиза используются для синтеза новых соединений. Так,фруктозо-6-фосфат и глицеральдегид-3-фосфат участвуют в образовании рибозо-5-фосфата - структурного компонента нуклеотидов; 3-фосфоглицерат может включаться в синтез аминокислот, таких как серии, глицин, цистеин (см. раздел 9). В печени и жировой ткани ацетил-КоА, образующийся из пирувата, используется как субстрат при биосинтезе жирных кислот, холестерина, а дигидроксиацетонфосфат как субстрат для синтеза глицерол-3-фосфата.

Восстановление пирувата в лактат.

2.3 Регуляция катаболизма глюкозы

Поскольку основное значение гликолиза состоит в синтезе АТФ, его скорость должна коррелировать с затратами энергии в организме.

Большинство реакций гликолиза обратимы, за исключением трёх, катализируемых гексокиназой (или глюкокиназой), фосфофруктокиназой и пируваткиназой. Регуляторные факторы, изменяющие скорость гликолиза, а значит и образование АТФ, направлены на необратимые реакции. Показателем потребления АТФ является накопление АДФ и АМФ. Последний образуется в реакции, катализируемой аденилаткиназой: 2 АДФ - АМФ + АТФ

Даже небольшой расход АТФ ведёт к заметному увеличению АМФ. Отношение уровня АТФ к АДФ и АМФ характеризует энергетический статус клетки, а его составляющие служат аллостерическими регуляторами скорости как общего пути катаболизма, так и гликолиза.

Существенное значение для регуляции гликолиза имеет изменение активности фосфофруктокиназы, потому что этот фермент, как упоминалось ранее, катализирует наиболее медленную реакцию процесса.

Фосфофруктокиназа активируется АМФ, но ингибируется АТФ. АМФ, связываясь с аллостерическим центром фосфофруктокиназы, увеличивает сродство фермента к фруктозо-6-фосфату и повышает скорость его фосфорилирования. Эффект АТФ на этот фермент - пример гомотропного ашюстеризма, поскольку АТФ может взаимодействовать как с аллостерическим, так и с активным центром, в последнем случае как субстрат.

При физиологических значениях АТФ активный центр фосфофруктокиназы всегда насыщен субстратами (в том числе АТФ). Повышение уровня АТФ относительно АДФ снижает скорость реакции, поскольку АТФ в этих условиях действует как ингибитор: связывается с аллостерическим центром фермента, вызывает конфор-мационные изменения и уменьшает сродство к его субстратам.

Изменение активности фосфофруктокиназы способствует регуляции скорости фосфорилирования глюкозы гексокиназой. Снижение активности фосфофруктокиназы при высоком уровне АТФ ведёт к накоплению как фруктозо-6-фосфата, так и глюкозо-6-фосфата, а последний ингибирует гексокиназу. Следует напомнить, что гексокиназа во многих тканях (за исключением печени и в-клеток поджелудочной железы) ингибируется глюкозо-6-фосфатом.

При высоком уровне АТФ снижается скорость цикла лимонной кислоты и дыхательной цепи. В этих условиях процесс гликолиза также замедляется. Следует напомнить, что аллостерическая регуляция ферментов ОПК и дыхательной цепи также связана с изменением концентрации таких ключевых продуктов, как NADH, АТФ и некоторых метаболитов. Так, NADH, накапливаясь в том случае, если не успевает окислиться в дыхательной цепи, ингибирует некоторые аллостерические ферменты цитратного цикла

Регуляция катаболизма глюкозы в скелетных мышцах.

2.4 Синтез глюкозы в печени (глюконеогенез)

Некоторые ткани, например мозг, нуждаются в постоянном поступлении глюкозы. Когда поступление углеводов в составе пищи недостаточно, содержание глюкозы в крови некоторое время поддерживается в пределах нормы за счёт расщепления гликогена в печени. Однако запасы гликогена в печени невелики. Они значительно уменьшаются к 6-10 ч голодания и практически полностью исчерпываются после суточного голодания. В этом случае в печени начинается синтез глюкозы de novo - глюконеогенез.

Глюконеогенез - процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника. Эти ткани могут обеспечивать синтез 80-100 г глюкозы в сутки. На долю мозга при голодании приходится большая часть потребности организма в глюкозе. Это объясняется тем, что клетки мозга не способны, в отличие от других тканей, обеспечивать потребности в энергии за счёт окисления жирных кислот. Кроме мозга, в глюкозе нуждаются ткани и клетки, в которых аэробный путь распада невозможен или ограничен, например эритроциты (они лишены митохондрий), клетки сетчатки, мозгового слоя надпочечников и др.

Первичные субстраты глюконеогенеза - лактат, аминокислоты и глицерол. Включение этих субстратов в глюконеогенез зависит от физиологического состояния организма.

Лактат - продукт анаэробного гликолиза. Он образуется при любых состояниях организма в эритроцитах и работающих мышцах. Таким образом, лактат используется в глюконеогенезе постоянно.

Глицерол высвобождается при гидролизе жиров в жировой ткани в период голодания или при длительной физической нагрузке.

Аминокислоты образуются в результате распада мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.

2.5 Синтез глюкозы из лактата

Лактат, образованный в анаэробном гликолизе, не является конечным продуктом метаболизма. Использование лактата связано с его превращением в печени в пируват. Лактат как источник пирувата важен не столько при голодании, сколько при нормальной жизнедеятельности организма. Его превращение в пируват и дальнейшее использование последнего являются способом утилизации лактата. Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD+ ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эту последовательность событий называют "глюкозо-лактатным циклом", или "циклом Кори" . Цикл Кори выполняет 2 важнейшие функции: 1 - обеспечивает утилизацию лактата; 2 - предотвращает накопление лактата и, как следствие этого, опасное снижение рН (лактоацидоз). Часть пирувата, образованного из лактата, окисляется печенью до СО 2 и Н 2 О. Энергия окисления может использоваться для синтеза АТФ, необходимого для реакций глюконеогенеза.

Цикл Кори (глюкозолактатный цикл). 1 - поступление лаюгата из сокращающейся мышцы с током крови в печень; 2 - синтез глюкозы из лактата в печени; 3 - поступление глюкозы из печени с током крови в работающую мышцу; 4 - использование глюкозы как энергетического субстрата сокращающейся мышцей и образование лактата.

Лактоацидоз. Термин "ацидоз" обозначает увеличение кислотности среды организма (снижение рН) до значений, выходящих за пределы нормы. При ацидозе либо увеличивается продукция протонов, либо происходит снижение их экскреции (в некоторых случаях и то и другое). Метаболический ацидоз возникает при увеличении концентрации промежуточных продуктов обмена (кислотного характера) вследствие увеличения их синтеза или уменьшения скорости распада или выведения. При нарушении кислотно-основного состояния организма быстро включаются буферные системы компенсации (через 10-15 мин). Лёгочная компенсация обеспечивает стабилизацию соотношения НСО 3 -/Н 2 СО 3 , которая в норме соответствует 1:20, а при ацидозе уменьшается. Лёгочная компенсация достигается увеличением объёма вентиляции и, следовательно, ускорением выведения СО 2 из организма. Однако основную роль в компенсации ацидоза играют почечные механизмы с участием аммиачного буфера. Одной из причин метаболического ацидоза может быть накопление молочной кислоты. В норме лактат в печени превращается обратно в глюкозу путём глюконеогенеза либо окисляется. Кроме печени, другим потребителем лактата служат почки и сердечная мышца, где лактат может окисляться до СО 2 и Н 2 О и использоваться как источник энергии, особенно при физической работе. Уровень лактата в крови - результат равновесия между процессами его образования и утилизации. Кратковременный компенсированный лактоацидоз встречается довольно часто даже у здоровых людей при интенсивной мышечной работе. У нетренированных людей лактоацидоз при физической работе возникает как следствие относительного недостатка кислорода в мышцах и развивается достаточно быстро. Компенсация осуществляется путём гипервентиляции.

При некомпенсированном лактоацидозе содержание лактата в крови увеличивается до 5 ммоль/л (в норме до 2 ммоль/л). При этом рН крови может составлять 7,25 и менее (в норме 7,36-7,44). Повышение содержания лактата в крови может быть следствием нарушения метаболизма пирувата

Нарушения метаболизма пирувата при лактоацидозе. 1 - нарушение использования пирувата в глюконеогенезе; 2 - нарушение окисления пирувата. глюкоза биологический катаболизм глюконеогенез

Так, при гипоксии, возникающей вследствие нарушения снабжения тканей кислородом или кровью, уменьшается активность пируватдегидрогеназного комплекса и снижается окислительное декарбоксилирование пирувата. В этих условиях равновесие реакции пируват - лактат сдвинуто в сторону образования лактата. Кроме того, при гипоксии уменьшается синтез АТФ, что следовательно, ведёт к снижению скорости глюконеогенеза - другого пути утилизации лактата. Повышение концентрации лактата и снижение внутриклеточного рН отрицательно влияют на активность всех ферментов, в том числе и пируваткарбоксилазы, катализирующей начальную реакцию глюконеогенеза.

Возникновению лактоацидоза также способствуют нарушения глюконеогенеза при печёночной недостаточности различного происхождения. Кроме того, лактоацидозом может сопровождаться гиповитаминоз В 1 , так как производное этого витамина (тиаминдифосфат) выполняет коферментную функцию в составе ПДК при окислительном декарбоксилировании пируват. Дефицит тиамина может возникать, например, у алкоголиков с нарушенным режимом питания.

Итак, причинами накопления молочной кислоты и развития лактоацидоза могут быть:

активация анаэробного гликолиза вследствие тканевой гипоксии различного происхождения;

поражения печени (токсические дистрофии, цирроз и др.);

нарушение использования лактата вследствие наследственных дефектов ферментов глюконеогенеза, недостаточности глюкозо-6-фосфатазы;

нарушение работы ПДК вследствие дефектов ферментов или гиповитаминозов;

применение ряда лекарственных препаратов, например бигуанидов (блокаторы глюконеогенеза, используемые при лечении сахарного диабета).

2.6 Синтез глюкозы из аминокислот

В условиях голодания часть белков мышечной ткани распадается до аминокислот, которые далее включаются в процесс катаболизма. Аминокислоты, которые при катаболизме превращаются в пируват или метаболиты цитратного цикла, могут рассматриваться как потенциальные предшественники глюкозы и гликогена и носят название гликогенных. Например, окса-лоацетат, образующийся из аспарагиновой кислоты, является промежуточным продуктом как цитратногр цикла, так и глюконеогенеза.

Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Это объясняется тем, что при расщеплении мышечных белков образуются аминокислоты, многие из которых превращаются сразу в пируват или сначала в оксалоацетат, а затем в пируват. Последний превращается в аланин, приобретая аминогруппу от других аминокислот. Аланин из мышц переносится кровью в печень, где снова преобразуется в пируват, который частично окисляется и частично включается в глюкозонеогенез. Следовательно, существует следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах > пируват в мышцах > аланин в мышцах > аланин в печени > глюкоза в печени > глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

Глюкозо-аланиновый цикл

2.7 Синтез глюкозы из глицерола

Глицерол могут использовать только те ткани, в которых имеется ферментглицеролкиназа, например печень, почки. Этот АТФ-зависимый фермент катализирует превращение глицерола в б-глицерофосфат (глицерол-3-фосфат).При включении глицерол-3-фосфата в глюконеогенез происходит его дегидрирование NAD-зависимой дегидрогеназой с образованием дигидроксиацетон-фосфата, который далее превращается в глюкозу.

Превращение глицерола в дигидрокси-ацетонфосфат

Таким образом, мы можем сказать, что биологическая роль глюкозы в организме очень большая. Глюкоза является один из основным источником энергии нашего организма. Она представляет собой легко усвояемым источником ценного питания, повышающим энергетические запасы организма и улучшающим его функции. Основное значение в организме в том, что она наиболее универсальным источником энергии для обеспечения метаболических процессов.

В организме человека применение гипертонического раствора глюкозы способствует расширению сосудов, усилению сократительной деятельности сердечной мышцы и увеличению объема мочи. Как общеукрепляющее средство глюкоза применяется при хронических заболеваниях, которые сопровождаются физическим истощением. Дезинтоксикационные свойства глюкозы обусловлены ее способностью активизировать функции печени по обезвреживанию ядов, а также уменьшением концентрации токсинов в крови в результате увеличения объема циркулирующей жидкости и усиленного мочеотделения. Кроме этого у животных она депонируется в виде гликогена, у растений -- в виде крахмала, полимер глюкозы -- целлюлоза является основной составляющей клеточных оболочек всех высших растений. У животных глюкоза помогает пережить заморозки.

Коротко говоря, глюкоза один из жизненноважных веществ в жизнедеятельности живых организмов.

Список использованной литературы

1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2014. - 301-350 ст.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

Размещено на Allbest.ru

...

Подобные документы

    Классификация и распространение углеводов, их значение для жизнедеятельности человека. Использование рефрактометрии в анализе глюкозы. Анализ глюкозы как альдегидоспирта, влияние щелочей, окислителей и кислот на препараты. Стабилизация растворов глюкозы.

    курсовая работа , добавлен 13.02.2010

    Особенности распределения глюкозы в крови. Краткая характеристика сути основных современных методов определения глюкозы в крови. Методики усовершенствования процесса измерения уровня глюкозы в крови. Оценка гликемии при диагностике сахарного диабета.

    статья , добавлен 08.03.2011

    Физические свойства глюкозы. Основные пищевые продукты, насыщенные углеводами. Правильное соотношение углеводов, жиров и белков как основа здорового питания. Поддержание уровня глюкозы в крови, иммунной функции. Повышение содержания инсулина в крови.

    презентация , добавлен 15.02.2014

    Потребление головным мозгом кислорода, глюкозы. Аэробное окисление глюкозы в головном мозге и механизмы его регуляции. Цикл трикарбоновых кислот и механизмы, контролирующие его скорость в мозге. Энергообеспечение специфических функций нервной ткани.

    курсовая работа , добавлен 26.08.2009

    Рассмотрение строения молекулы инсулина, связей аминокислот. Изучение особенностей синтеза белкового гормона в кровь, описание схемы превращения. Регуляция секреции инсулина в организме. Действие данного гормона по снижению содержания глюкозы в крови.

    презентация , добавлен 12.02.2016

    Определение глюкозы в крови на анализаторе глюкозы ECO TWENTY. Определение креатинина, мочевины, билирубина в крови на биохимическом анализаторе ROKI. Исследование изменения биохимических показателей крови при беременности. Оценка полученных данных.

    отчет по практике , добавлен 10.02.2011

    Строение и функция почек, теория образования мочи. Особенности строения нефрона. Физические свойства мочи и клинико-диагностическое значение. Виды протеинурий, методы качественного и количественного определения белка в моче. Определение глюкозы в моче.

    шпаргалка , добавлен 24.06.2010

    Эпидемиология сахарного диабета, метаболизм глюкозы в организме человека. Этиология и патогенез, панкреатическая и внепанкреатическая недостаточность, патогенез осложнений. Клинические признаки сахарного диабета, его диагностика, осложнения и лечение.

    презентация , добавлен 03.06.2010

    Изучение радионуклидного томографического метода исследования внутренних органов человека и животного. Анализ распределения в организме активных соединений, меченых радиоизотопами. Описания методики оценки метаболизма глюкозы в сердце, легких и мозге.

    реферат , добавлен 15.06.2011

    Причины диабетической (кетоацидотической) комы - состояния, развивающегося в результате недостатка инсулина в организме у больных сахарным диабетом. Начальные проявления его декомпенсации. Гомеостаз глюкозы у человека. Этиология и проявления гипогликемии.

Основным источником энергии для человека считается глюкоза, которая поступает в организм вместе с углеводами и выполняет множество жизненноважных функций для полноценной жизнедеятельности человеческого организма. Многие считают, что глюкоза оказывает негативное воздействие, приводит к ожирению, но с медицинской точки зрения, это незаменимое вещество, которое покрывает энергетические потребности организма.

В медицине глюкозу можно встретить под термином «дектоза» или «виноградный сахар», она должна присутствовать в крови (эритроцитах), обеспечивать клетки головного мозга необходимой энергией. Однако для организма человека глюкоза может быть опасна как в избыточном количестве, так и при дефиците. Попробуем более подробно ознакомиться с глюкозой, ее свойствами, характеристикой, показаниями, противопоказаниями и другими важными аспектами.

Читайте в этой статье:

Что такое глюкоза. Общие сведения?

Глюкоза относится к простым углеводам, которые хорошо усваиваются организмом, легко растворяются в воде, но практически не растворяются в спиртовых растворах. В медицине глюкоза выпускается в форме гипертонического или изотонического раствора, которые широко используют для комплексного лечения многих заболеваний. Сама глюкоза предоставляет собой белый порошок с бесцветными кристаллами, имеющий слегка сладкий вкус без запаха.

Около 60% глюкозы попадает в организм человека вместе с продуктами питания в виде сложных химических соединений, среди которых находится полисахаридный крахмал, сахароза, целлюлоза, декстрин и небольшое количество полисахаридов животного происхождения, которые берут активное участие во многих обменных процессах.

После поступления углеводов в желудочно-кишечный тракт, они расщепляются на глюкозу, фруктозу, галактозу. Часть глюкозы всасывается в кровяной поток и затрачивается на энергетические потребности. Другая часть откладывается в жировых запасах. После процесса переваривания пищи начинается обратный процесс, в котором жиры и гликоген начинают превращаться в глюкозу. Таким образом, происходит постоянная концентрация глюкозы в крови. Содержание глюкозы в крови при нормальном функционировании организма считается – от 3,3 до 5,5 ммоль/л.

Если уровень глюкозы в крови снижается, тогда человек ощущает чувство голода, снижаются энергетические силы, ощущается слабость. Систематическое снижение глюкозы в крови может привести к внутренним нарушениям и заболеваниям разной локализации.

Помимо обеспечения организма энергией, глюкоза участвует в синтезе липидов, нуклеиновых кислот, аминокислот, ферментов и других полезных веществах.

Для того чтоб глюкоза хорошо усваивалась организмом, некоторым клеткам требуется гормон поджелудочной железы (инсулин), без которого глюкоза не сможет проникнуть в клетки. Если отмечается дефицит инсулина, тогда большая часть глюкозы не расщепляется, а остается в крови, что приводит к постепенной их гибели и развитии сахарного диабета.

Роль глюкозы в организме человека

Глюкоза берет активное участие во многих процессах организма человека:

  • участвует в важных обменных процессах;
  • считается главным источником энергии;
  • стимулирует работу сердечно – сосудистой системы;
  • используется в лечебных целях для лечения многих заболеваний: патологии печени, болезни центральной нервной системы, различные инфекции, интоксикации организма и других болезнях. Глюкоза содержится во многих протыкашлевых препаратах, кровезаменителях;
  • обеспечивает питание клеток головного мозга;
  • устраняет чувство голода;
  • снимает стресс, нормализует работу нервной системы.

Помимо вышеперечисленных преимуществ глюкозы в организме человека, она улучшает умственную и физическую работоспособность, нормализует работу внутренних органов и улучшает общее состояние здоровья.

Глюкоза – показания и противопоказания к применению

Глюкоза часто назначается врачами разных областей медицины, она выпускается в нескольких фармацевтических формах: таблетки, раствор для внутривенного введения по 40; 200 или 400 мил. Основные показания к назначению глюкозы:

  • патологии печени: гепатит, гипогликемия, дистрофия печени, атрофия печени;
  • отек легких;
  • лечение хронического алкоголизма, наркомании или другие интоксикации организма;
  • коллапс и анафилактический шок;
  • декомпенсация сердечной функциональности;
  • инфекционные заболевания;

Глюкозу для лечения вышеперечисленных заболеваний чаще используют в комплексном лечении с другими препаратами.

Противопоказания — кому глюкоза опасна

Помимо положительных качеств глюкозы, она, как и любой лекарственный препарат имеет несколько противопоказаний:

  • сахарный диабет;
  • гипергликемия;
  • анурия;
  • тяжелые стадии дегидратации;
  • повышенная чувствительность к глюкозе.

Если глюкоза противопоказанна пациенту, тогда врач назначает изотонический раствор натрия хлорида.

В каких продуктах содержится глюкоза?

Основным источником глюкозы считаются продукты питания, которые должны в полной мере поступать в организм человека, обеспечивая его нужными веществами. Большое количество глюкозы содержится в натуральных соках фруктов и ягод. Большое количество глюкозы содержиат:

  • виноград разных сортов;
  • вишня, черешня;
  • малина;
  • клубника, земляника;
  • слива;
  • арбуз;
  • морковь, белокочанная капуста.

Учитывая, что глюкоза относится к сложным углеводам, она не содержится в продуктах животного происхождения. Небольшое ее количество находится в яйцах, кисломолочных продуктах, пчелином меде, некоторых морепродуктах.

Когда назначают глюкозу?

Препараты глюкозы часто врачи назначают в виде внутривенных инфекций при различных нарушениях и недомоганиях организма:

  • физическое истощение организма;
  • восстановление энергетического баланса – характерно для спортсменов;
  • медицинских показателях при беременности – кислородное голодание плода, хроническая усталость;
  • гипогликемии — снижение уровня сахара в крови;
  • инфекционные заболевания разной этиологии и локализации;
  • болезни печени;
  • геморрагические диатезы — повышенная кровоточивость;
  • шок, коллапс — резкое снижение артериального давления.

Дозу препарата, курс лечения назначается врачом индивидуально для каждого пациента в зависимости от поставленного диагноза, особенностей организма.

Брожение глюкозы

Ферментация или брожение предоставляет собой сложный биохимический процесс, в период которого происходит распад сложных органических веществ на более простые.

Брожение с участием глюкозы происходит под воздействием определенных микроорганизмов, бактерий или дрожжей, это позволяет получить другой продукт. В процессе брожения сахароза превращается в глюкозу и фруктозу, также добавляются другие ингредиенты.

К примеру, для приготовления пива добавляют солод и хмель, водки — тростниковый сахар с последующей перегонкой, а вина – виноградный сок и природные дрожжи. Если процесс брожения происходит все этапы, тогда получается сухое вино или светлое пиво, ну а если брожение преждевременно остановлено, тогда получится сладкое вино и темное пиво.

Процесс ферментации состоит из 12 этапов, в которых нужно придерживаться всех правил и норм приготовления того или иного напитка. Поэтому такие процедуры должны проводить специалисты, обладающие определенными навыками и знаниями.

Уровень глюкозы в крови имеет большое влияние на здоровье человека, поэтому врачи рекомендуют периодически сдавать лабораторные анализы крови на уровень сахара в крови, это поможет следить за внутренней средой организма.

Глюкоза – это такой вид простого сахара (моносахарид). Название происходит от древне-греческого слова «сладкий». Также ее называют виноградным сахаром или десктрозой. В природе это вещество встречается в соке многих ягод и фруктов. А еще глюкоза является одним из основных продуктов фотосинтеза.

Молекулы глюкозы является частью более сложных сахаров: полисахаридов (целлюлозы, крахмала, гликогена) и некоторых дисахаридов (мальтозы, лактозы и сахарозы). И она же является конечным продуктом гидролиза (распада) большинства сложных сахаров. Например дисахариды, попадая к нам в желудок, быстро распадаются на глюкозу и фруктозу.

Свойства глюкозы

В чистом виде это вещество в виде кристаллов, без выраженного цвета и запаха, сладкое на вкус и хорошо растворимое в воде. Есть вещества и послаще глюкозы, например сахароза слаще ее в целых 2 раза!

Какая польза от глюкозы?

Глюкоза – это основной и самый универсальный источник энергии для метаболических процессов в организме человека и животных. Даже наш мозг остро нуждается в глюкозе и начинает активно посылать сигналы в виде чувства голода, при ее дефиците. Организм людей и животных запасает ее в виде гликогена, а растения запасают в виде крахмала. Более половины всей биологической энергии мы получаем из процессов преобразования глюкозы! Для этого наш организм подвергает ее гидролизу, в результате которого одна молекула глюкозы превращается в две молекулы пировиноградной кислоты (название страшное, но вещество очень важное). И вот здесь-то начинается самое интересное!

Разные превращения глюкозы в энергию

Дальнейшее превращение глюкозы происходит по разному, в зависимости от условий в которых оно происходит:

  1. Аэробный путь. Когда кислорода достаточно – пировиноградная кислота превращается в особый фермент, который участвует в цикле Кребса (процесс катаболизма и образования различных веществ).
  2. Анаэробный путь. Если кислорода недостаточно, то распад пировиноградной кислоты сопровождается выделением лактата (молочной кислоты). По распространенному мнению именно из-за лактата у нас болят мышцы после тренировки . (на самом деле это не совсем так).

Уровень глюкозы в крови регулируется специальным гормоном – инсулином .

Применение чистой глюкозы

В медицине глюкозу применяют для снятия интоксикации организма, потому что она обладает универсальным антитоксическим действием. И с ее помощью эндокринологи могут определить наличие и тип сахарного диабета у пациента, для этого проводится стресс-тест с вводом высокого количества глюкозы в организм. Определение глюкозы в крови это обязательный этап диагностики сахарного диабета.

Норма глюкозы в крови

Примерный уровень глюкозы в крови норма для разного возраста:

  • у детей до 14 лет - 3,3–5,5 ммоль/л
  • у взрослых с 14 до 60 лет - 3,5–5,8 ммоль/л

С возрастом и при беременности уровень глюкозы в крови может повыситься. Если у Вас, по результатам анализа сильно превышены показатели сахара, то незамедлительно обратитесь к врачу!


Глюкоза С 6 Н 12 О 6 – моносахарид, не гидролизующийся с образованием более простых углеводов.

Как видно из структурной формулы, глюкоза является одновременно многоатомным спиртом и альдегидом, то есть альдегидоспиртом . В водных растворах глюкоза может принимать циклическую форму.

Физические свойства

Глюкоза – бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. По сравнению со свекловичным сахаром менее сладкая.

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;
2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;
3) глюкоза есть в животных организмах;
4) в крови человека ее содержится примерно 0,1 %.

Особенности строения глюкозы:

1. Состав глюкозы выражается формулой: С6Н12O6, она принадлежит к многоатомным спиртам.
2. Если раствор этого вещества прилить к свежеосажденному гидроксиду меди (II), образуется ярко-синий раствор, как в случае глицерина.
Опыт подтверждает принадлежность глюкозы к многоатомным спиртам.
3. Существует сложный эфир глюкозы, в молекуле которого пять остатков уксусной кислоты. Из этого следует, что в молекуле углевода пять гидроксильных групп. Этот факт объясняет, почему глюкоза хорошо растворяется в воде и имеет сладкий вкус.
Если раствор глюкозы нагреть с аммиачным раствором оксида серебра (I), то получится характерное «серебряное зеркало».
Шестой атом кислорода в молекуле вещества входит в состав альдегидной группы.
4. Чтобы составить полное представление о строении глюкозы, надо знать, как построен скелет молекулы. Поскольку все шесть атомов кислорода входят в состав функциональных групп, следовательно, атомы углерода, образующие скелет, соединены друг с другом непосредственно.
5. Цепь атомов углерода прямая, а не разветвленная.
6. Альдегидная группа может находиться только в конце неразветвленной углеродной цепи, и гидроксильные группы могут быть устойчивы, находясь лишь у разных атомов углерода.

Химические свойства

Глюкоза обладает химическими свойствами, характерными для спиртов и альдегидов. Кроме того, она обладает и некоторыми специфическими свойствами.

1. Глюкоза – многоатомный спирт.

Глюкоза с Cu(OH) 2 даёт раствор синего цвета (глюконат меди)

2. Глюкоза – альдегид.

а) Реагирует с аммиачным раствором оксидом серебра с образованием серебряного зеркала:

СН 2 ОН-(СНОН) 4 -СНО+Ag 2 O → СН 2 ОН-(СНОН) 4 -СОOH + 2Ag

глюконовая кислота

б) С гидроксидом меди даёт красный осадок Cu 2 O

СН 2 ОН-(СНОН) 4 -СНО + 2Cu(OH) 2 → СН 2 ОН-(СНОН) 4 -СОOH + Cu 2 O↓ + 2H 2 O

глюконовая кислота

в) Восстанавливается водородом с образованием шестиатомного спирта (сорбита)

СН 2 ОН-(СНОН) 4 -СНО + H 2 → СН 2 ОН-(СНОН) 4 -СH 2 OH

3. Брожение

а) Спиртовое брожение (для получения спиртных напитков)

С 6 H 12 O 6 → 2СH 3 –CH 2 OH + 2CO 2

этиловый спирт

б) Молочнокислое брожение (скисание молока, квашение овощей)

C 6 H 12 O 6 → 2CH 3 –CHOH–COOH

молочная кислота

Применение, значение

Глюкоза образуется в растениях в процессе фотосинтеза. Животные получают её с пищей. Глюкоза – главный источник энергии в живых организмах . Глюкоза является ценным питательным продуктом. Применяется в кондитерском деле, в медицине как укрепляющее средство, для получения спирта, витамина С и др.



Название «углеводы» сохранилось с тех времен, когда строение этих соединений еще не было известно, но был установлен их состав, которому соответствует формула Cn(H 2 O) m . Поэтому углеводы относили к гидратам углерода, т.е. к соединениям углерода и воды – «углеводам». В наше время большинство углеводов выражают формулой C n H 2n O n .
1. Углеводы используются с глубокой древности - самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд.
2. Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э.
3. Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом.
4. Крахмал был известен ещё древним грекам.
5. Целлюлоза, как составная часть древесины, используется с глубокой древности.
6. Термин слова “сладкий” и окончание - оза- для сахаристых веществ было предложено французским химиком Ж. Дюла в 1838 г. Исторически сладость была главным признаком, по которому то или иное вещество относили к углеводам.
7. В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала, а впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцемус в 1837 г. С 6 Н 12 О 6
8. Синтез углеводов из формальдегида в присутствии Са(ОН) 2 был произведён А.М. Бутлеровым в 1861 г.
Глюкоза является бифункциональным соединением, т.к. содержит функциональные группы – одну альдегидную и 5 гидроксильных. Таким образом, глюкоза - многоатомный альдегидоспирт.

Структурная формула глюкозы имеет вид:

Сокращённая формула имеет вид:

Молекула глюкозы может существовать в трех изомерных формах, причем две из них являются циклическими, одна – линейной.

Все три изомерных формы находятся в динамическом равновесии между собой:
циклическая [(альфа-форма) (37%)] <--> линейная (0,0026%) <--> циклическая [(бета-форма) (63%)]
Циклические альфа- и бета- формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца. В альфа-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН 2 ОН, в бета-глюкозе – в цис-положении.

Химические свойства глюкозы:

Свойства, обусловленные наличием альдегидной группы:

1. Реакции окисления:
а) с Cu(OH) 2:
C 6 H 12 O 6 + Cu(OH) 2 ↓ ------> ярко-синий раствор


2.Реакция восстановления:
c водородом H 2:

В этой реакции может принимать участие лишь линейная форма глюкозы.

Свойства обусловленные наличием нескольких гидроксильных групп (ОН):


1. Реагирует с карбоновыми кислотами с образованием сложных эфиров (пять гидроксильных групп глюкозы вступают в реакцию с кислотами):

2. Как многоатомный спирт реагирует с гидроксидом меди (II) c образованием алкоголя-та меди (II):


Специфические свойства

Большое значение имеют процессы брожения глюкозы, происходящие под действием органических катализаторов-ферментов (они вырабатываются микроорганизмами).
а) спиртовое брожение (под действием дрожжей):


б) молочнокислое брожение (под действием молочнокислых бактерий):


г) лимоннокислое брожение:

д) ацетон-бутанольное брожение:

Получение глюкозы

1.Синтез глюкозы из формальдегида в присутствии гидроксида кальция (ре-акция Бутлерова):

2. Гидролиз крахмала (реакция Киргофа):

Биологическое значение глюкозы, её применение

Глюкоза - необходимый компонент пищи, один из главных участников обмена веществ в организме, очень питательна и легко усваивается. При её окислении выделяется больше трети используемой в организме энергий ресурс - жиры, но роль жиров и глюкозы в энергетике разных органов различна. Сердце в качестве топлива используется жирные кислоты. Скелетным мышцам глюкоза нужна для “запуска”, а вот нервные клетки, в том числе и клетки головного мозга работают только на глюкозе. Их потребность составляет 20-30% вырабатываемой энергии. Нервным клеткам энергия нужна каждую секунду, а глюкозу организм получает при приёме пищи. Глюкоза легко усваивается организмом, поэтому ее используют в медицине в качестве укрепляющего лечебного средства. Специфические олигосахариды определяют группу крови. В кондитерском деле для изготовления мармелада, карамели, пряников и т.д. Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, также как и при силосовании кормов. На практике используется и спиртовое брожение глюкозы, например, при производстве пива.
Углеводы действительно самые распространенные органические вещества на Земле, без которых невозможно существование живых организмов. В живом организме в процессе метаболизма глюкоза окисляется с выделением большого количества энергии:

Похожие статьи