Суммарное уравнение цикла кребса. Цикл Кребса или как запомнить «золотое кольцо» биохимии Окислительные реакции цикла кребса

08.10.2020

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является "фокусом", в котором сходятся практически все метаболические пути.

Итак, образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА вступает в цикл Кребса. Данный цикл состоит из восьми последовательных реакций (рис. 91). Начинается цикл с конденсации ацетил-КоА с оксалоацетатом и образования лимонной кислоты. (Как будет видно ниже, в цикле окислению подвергается собственно не ацетил-КоА, а более сложное соединение - лимонная кислота (трикарбоновая кислота). )

Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и дскарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса появляется оксалоацетат (четырехуглеродное соединение), т. е. в результате полного оборота цикла молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула оксалоацетата регенерируется. Ниже приводятся все восемь последовательных реакций (этапов) цикла Кребса.

В первой реакции, катализируемой ферментом цитратсинтазой, ацетил-КоА конденсируется с оксалоацетатом. В результате образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

Во второй реакции цикла образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту. Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитат-гидратаза:

В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:


(В тканях существует два типа изоцитратдегидрогеназ: НАД- и НАДФ-зависимые. Установлено, что роль основного катализатора окисления изолимонной кислоты в цикле Кребса выполняет НАД-зависимая изоцитратдегидрогеназа. )

В ходе изоцитратдегидрогеназной реакции изолимонная кислота декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в ходе реакции принимают участие пять коферментов: TДФ, амид липоевой кислоты, HS-KoA, ФАД и НАД. Суммарно данную реакцию можно написать так:

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:


(Образовавшийся ГТФ отдает затем свою концевую фосфатную группу на АДФ, вследствие чего образуется АТФ. Образование высокоэргического нуклеозидтрифосфата в ходе сукцинил-КоА-синтетазной реакции - пример фосфорилирования на уровне субстрата. )

В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД:

В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота:

Наконец, в восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ("сгорание") одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов (или в цепи дыхательных ферментов), локализованной в митохондриях.

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Как уже отмечалось, 1 молекула НАДН 2 (3 молекулы АТФ) образуется при окислительном декарбоксилирова-нии пирувата в ацетил-КоА. Так как при расщеплении одной молекулы глюкозы образуются две молекулы пирувата, то при окислении их до 2 молекул ацетил-КоА и последующих двух оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление одной молекулы пирувата до СО 2 и Н 2 O дает 15 молекул АТФ).

К этому надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 4 молекулы АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН 2 , которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции. Итого получим, что при расщеплении в тканях 1 молекулы глюкозы по уравнению: C 6 H 12 0 6 + 60 2 -> 6СO 2 + 6Н 2 O синтезируется 36 молекул АТФ, что способствует накоплению в макроэргических фосфатных связях аденозинтрифосфата 36 X 34,5 ~ 1240 кДж (или, по другим данным, 36 Х 38 ~ 1430 кДж) свободной энергии. Другими словами, из всей освобождающейся при аэробном окислении глюкозы свободной энергии (окодо 2840 кДж) до 50% ее аккумулируется в митохондриях в форме, которая может быть использована для выполнения различных физиологических функций. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем гликолиз. Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН 2 в дальнейшем при окислении дают не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН 2 не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицерофосфатного челночного механизма (рис. 92). Как видно на рисунке, цитоплазматический НАДН 2 сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой.

Цикл трикарбоновых кислот

Ци́кл трикарбо́новых кисло́т (цикл Кре́бса , цитра́тный цикл ) - центральная часть общего пути катаболизма , циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2 . При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии - АТФ .

Цикл Кребса - это ключевой этап дыхания всех клеток , использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Функции

  1. Интегративная функция - цикл является связующим звеном между реакциями анаболизма и катаболизма.
  2. Катаболическая функция - превращение различных веществ в субстраты цикла:
    • Жирные кислоты, пируват,Лей,Фен - Ацетил-КоА.
    • Арг, Гис, Глу - α-кетоглутарат.
    • Фен, тир - фумарат.
  3. Анаболическая функция - использование субстратов цикла на синтез органических веществ:
    • Оксалацетат - глюкоза , Асп, Асн.
    • Сукцинил-КоА - синтез гема.
    • CО 2 - реакции карбоксилирования.
  4. Водорододонорная функция - цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н + и одного ФАДН 2 .
  5. Энергетическая функция - 3 НАДН.Н + дает 7.5 моль АТФ, 1 ФАДН 2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

Мнемонические правила

Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило:

Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

Существует также следующее мнемоническое стихотворение (его автором является ассистент кафедры биохимии КГМУ Е. В. Паршкова ):

Щук у ацетил лимон ил, Но нарцис са кон ь боялся, Он над ним изолимон но Альфа-кетоглутар ался. Сукцинил ся коэнзим ом, Янтар ился фумар ово, Яблоч ек припас на зиму, Обернулся щук ой снова.

(щавелевоуксусная кислота, лимонная кислота, цис-аконитовая кислота, изолимонная кислота, α-кетоглутаровая кислота, сукцинил-KoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

Другой вариант стихотворения

ЩУКа съела ацетат, получается цитрат через цис-аконитат будет он изоцитрат водороды отдав НАД, он теряет СО 2 этому безмерно рад альфа-кетоглутарат окисление грядет - НАД похитил водород ТДФ, коэнзимА забирают СО 2 а энергия едва в сукциниле появилась сразу ГТФ родилась и остался сукцинат вот добрался он до ФАДа - водороды тому надо фумарат воды напился, и в малат он превратился тут к малату НАД пришел, водороды приобрел ЩУКа снова объявилась и тихонько затаилась Караулить ацетат...

Примечания

Ссылки

  • Цикл трикарбоновых кислот (англ.)

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.

· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Гликолиз превращает глюкозу в пируват и продуцирует две молекулы АТФ из молекулы глюкозы - это небольшая часть потенциальной энергии этой молекулы.

При аэробных условиях пируват из гликолиза превращается в ацетил-КоА и окисляется в С0 2 в цикле трикарбоновых кислот (цикл лимонной кислоты). При этом электроны, освобождающиеся в реакциях этого цикла, проходят НАДН и ФАДН 2 на 0 2 - конечный акцептор. Электронный транспорт сопряжен с созданием протонного градиента мембраны митохондрий, энергия которого используется затем на синтез АТФ в результате окислительного фосфорилирования. Рассмотрим эти реакции.

В аэробных условиях пировиноградная кислота (1-й этап) подвергается окислительному декарбоксилированию, более эффективному, чем трансформация в молочную кислоту, с образованием ацетил-КоА (2-й этап), который может окисляться до конечных продуктов распада глюкозы - С0 2 и Н 2 0 (3-й этап). Г. Кребс (1900-1981), немецкий биохимик, изучив окисление отдельных органических кислот, объединил их реакции в единый цикл. Поэтому в его честь цикл трикарбоновых кислот часто называют циклом Кребса.

Окисление пировиноградной кислоты до ацетил-КоА происходит в митохондриях при участии трех ферментов (пируватде- гидрогеназа, липоамиддегидрогеназа, липоилацетилтрансфера- за) и пяти коферментов (НАД, ФАД, тиаминпирофосфат, амид липоевой кислоты, коэнзим А). В составе этих четырех коферментов находятся витамины группы В (В х, В 2 , В 3 , В 5), что свидетельствует о необходимости этих витаминов для нормального окисления углеводов. Под влиянием этой сложной ферментной системы пируват в реакции окислительного декарбоксилирования превращается в активную форму уксусной кислоты - ацетил- коэнзим А:

При физиологических условиях пируватдегидрогеназа - исключительно необратимый фермент, что объясняет невозможность конверсии жирных кислот в углеводы.

Наличие макроэргической связи в молекуле ацетил-КоА указывает на высокую реакционную способность этого соединения. В частности, ацетил-КоА может выступать в митохондриях для генерации энергии, в печени избыток ацетил-КоА поступает на синтез кетоновых тел, в цитозоле участвует в синтезах сложных молекул, таких как стериды и жирные кислоты.

Полученный в реакции окислительного декарбоксилирова- ния пировиноградной кислоты ацетил-КоА вступает в цикл три- карбоновых кислот (цикл Кребса). Цикл Кребса - финальный катаболический путь окисления углеводов, жиров, аминокислот, является по существу «метаболическим котлом». Реакции цикла Кребса, протекающие исключительно в митохондриях, также носят название цикла лимонной кислоты или цикла три- карбоновых кислот (ЦТК).

Одной из важнейших функций цикла трикарбоновых кислот является генерация восстановленных коферментов (3 молекулы НАДН + Н + и 1 молекула ФАДН 2) с последующим переносом атомов водорода или их электронов к конечному акцептору - молекулярному кислороду. Этот транспорт сопровождается большим уменьшением свободной энергии, часть которой используется в процессе окислительного фосфорилирования для запасания в форме АТФ. Понятно, что цикл трикарбоновых кислот является аэробным, зависимым от кислорода.

1. Начальная реакция цикла трикарбоновых кислот представляет конденсацию ацетил-КоА и щавелево-уксусной кислоты с участием фермента цитратсинтазы митохондриального матрикса с образованием лимонной кислоты.

2. Под влиянием фермента аконитазы, катализирующего удаление молекулы воды из цитрата, последний превращается


в цыс-аконитовую кислоту. Вода комбинирует с цыс-аконито- вой кислотой, превращаясь в изолимонную.

3. Затем фермент изоцитратдегидрогеназа катализирует первую дегидрогеназную реакцию цикла лимонной кислоты, когда изолимонная кислота превращается в реакции окислительного декарбоксилирования в а-кетоглутаровую:

В этой реакции образуется первая молекула С0 2 и первая молекула НАДН 4- Н + цикла.

4. Дальнейшее превращение а-кетоглутаровой кислоты в сукцинил-КоА катализируется мультиферментным комплексом а-кетоглутаровой дегидрогеназы. Эта реакция химически является аналогом пируватдегидрогеназной реакции. В ней участвуют липоевая кислота, тиаминпирофосфат, HS-KoA, НАД + , ФАД.

В результате этой реакции вновь образуется молекула НАДН + Н + и С0 2 .

5. Молекула сукцинил-КоА имеет макроэргическую связь, энергия которой сохраняется в следующей реакции в форме ГТФ. Под влиянием фермента сукцинил-КоА-синтетазы сукци- нил-КоА превращается в свободную янтарную кислоту. Отметим, что янтарная кислота также может быть получена из ме- тилмалонил-КоА при окислении жирных кислот с нечетным числом атомов углерода.

Эта реакция является примером субстратного фосфорилирования, так как макроэргическая молекула ГТФ в данном случае образуется без участия цепи транспорта электронов и кислорода.

6. Янтарная кислота окисляется в фумаровую кислоту в сук- цинатдегидрогеназной реакции. Сукцинатдегидрогеназа, типичный железосеросодержащий фермент, коферментом которого является ФАД. Сукцинатдегидрогеназа - единственный фермент, фиксируемый на внутренней митохондриальной мембране, тогда как все другие ферменты цикла находятся в митохондриальном матриксе.

7. Затем следует гидратация фумаровой кислоты в яблочную кислоту под влиянием фермента фумаразы в обратимой реакции при физиологических условиях:

8. Финальной реакцией цикла трикарбоновых кислот является малатдегидрогеназная реакция с участием активного фермента митохондриальной НАД~-зависимой малатдегидро- геназы, в которой образуется третья молекула восстановленного НАДН + Н + :


Образованием щавелево-уксусной кислоты (оксалоацетата) завершается один оборот цикла трикарбоновых кислот. Щавелево-уксусная кислота может быть использована в окислении второй молекулы ацетил-КоА, и этот цикл реакций может неоднократно повторяться, постоянно приводя к получению щавелево-уксусной кислоты.

Таким образом, окисление в ЦТК одной молекулы ацетил- КоА как субстрата цикла приводит к получению одной молекулы ГТФ, трех молекул НАДФ + Н + и одной молекулы ФАДН 2 . Окисление этих восстановителей в цепи биологического окис-


ления приводит к синтезу 12 молекул АТФ. Этот расчет понятен из темы «Биологическое окисление»: включение одной молекулы НАД + в систему транспорта электронов сопровождается в конечном счете образованием 3 молекул АТФ, включение молекулы ФАДН 2 обеспечивает образование 2 молекул АТФ и одна молекула ГТФ эквивалентна 1 молекуле АТФ.

Отметим, что два атома углерода адетил-КоА вступают в цикл трикарбоновых кислот и два атома углерода покидают цикл в виде С0 2 в реакциях декарбоксилирования, катализируемых изоцитратдегидрогеназой и альфа-кетоглутарат-дегид- рогеназой.

При полном окислении молекулы глюкозы в аэробных условиях до С0 2 и Н 2 0 образование энергии в форме АТФ составляет:

  • 4 молекулы АТФ при конверсии молекулы глюкозы в 2 молекулы пировиноградной кислоты (гликолиз);
  • 6 молекул АТФ, образующиеся в 3-фосфоглицеральдегид- дегидрогеназной реакции (гликолиз);
  • 30 молекул АТФ, образующиеся при окислении двух молекул пировиноградной кислоты в пируватдегидрогеназной реакции и в последующих превращениях двух молекул аце- тил-КоА до С0 2 и Н 2 0 в цикле трикарбоновых кислот. Следовательно, общий выход энергии при полном окислении молекулы глюкозы может составлять 40 молекул АТФ. Однако следует принять во внимание, что при окислении глюкозы на стадии превращения глюкозы в глюкозо-6-фосфат и на стадии превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат затрачено две молекулы АТФ. Поэтому «чистый» выход энергии при окислении молекулы глюкозы составляет 38 молекул АТФ.

Можно сравнить энергетику анаэробного гликолиза и аэробного катаболизма глюкозы. Из 688 ккал энергии, теоретически заключенных в 1 грамм-молекуле глюкозы (180 г), 20 ккал находятся в двух молекулах АТФ, образующихся в реакциях анаэробного гликолиза, и 628 ккал теоретически остаются в форме молочной кислоты.

В аэробных условиях из 688 ккал грамм-молекулы глюкозы в 38 молекулах АТФ получено 380 ккал. Таким образом, эффективность использования глюкозы в аэробных условиях выше, чем в анаэробном гликолизе, примерно в 19 раз.

Следует указать, что все реакции окисления (окисление три- озофосфата, пировиноградной кислоты, четыре реакции окисления цикла трикарбоновых кислот) конкурируют в синтезе АТФ из АДФ и Ф неор (эффект Пастера). Это значит, что образующаяся молекула НАДН + Н + в реакциях окисления имеет выбор между реакциями дыхательной системы, переносящими водород на кислород, и ферментом ЛДГ, передающим водород на пировиноградную кислоту.

На ранних стадиях цикла трикарбоновых кислот его кислоты могут выходить из цикла для участия в синтезе других соединений клетки без нарушений функционирования самого цикла. Различные факторы вовлекаются в регуляцию активности цикла трикарбоновых кислот. Среди них в первую очередь следует назвать поступление молекул ацетил-КоА, активность пируватдегидрогеназного комплекса, активность компонентов дыхательной цепи и сопряженное с ней окислительное фосфорилирование, а также уровень щавелево-уксусной кислоты.

Молекулярный кислород непосредственно не участвует в цикле трикарбоновых кислот, однако его реакции осуществляются только в аэробных условиях, так как НАД~ и ФАД могут быть регенерированы в митохондриях лишь при переносе электронов на молекулярный кислород. Следует подчеркнуть, что гликолиз, в отличие от цикла трикарбоновых кислот, возможен и при анаэробных условиях, так как НАД~ регенерируется при переходе пировиноградной кислоты в молочную.

Помимо образования АТФ, цикл трикарбоновых кислот имеет еще одно важное значение: цикл обеспечивает структурами-посредниками различные биосинтезы организма. Например, большинство атомов порфиринов происходит из сукцинил- КоА, многие аминокислоты являются производными а-кето- глутаровой и щавелево-уксусной кислот, а фумаровая кислота имеет место в процессе синтеза мочевины. В этом проявляется интегральность цикла трикарбоновых кислот в обмене углеводов, жиров, белков.

Как показывают реакции гликолиза, способность большинства клеток генерировать энергию заключена в их митохондриях. Число митохондрий в различных тканях связано с физиологическими функциями тканей и отражает их возможность участия в аэробных условиях. Например, эритроциты не имеют митохондрий и, следовательно, не обладают способностью генерировать энергию, используя кислород как конечный акцептор электронов. Однако в сердечной мышце, функционирующей в аэробных условиях, половина объема цитоплазмы клеток представлена митохондриями. Печень также зависит от аэробных условий для своих различных функций, и гепатоциты млекопитающих содержат до 2 тыс. митохондрий в одной клетке.

Митохондрии включают две мембраны - внешнюю и внутреннюю. Внешняя мембрана более простая, состоящая из 50% жиров и 50% белков, имеет сравнительно мало функций. Внутренняя мембрана структурно и функционально представляется более сложной. Примерно 80% ее объема составляют белки. Она содержит большинство ферментов, участвующих в электронном транспорте и окислительном фосфорилировании, метаболические посредники и аденин-нуклеотиды между цитозолем и митохондриальным матриксом.

Различные нуклеотиды, вовлекаемые в окислительно-восстановительные реакции, такие как НАД + , НАДН, НАДФ + , ФАД и ФАДН 2 , не проникают сквозь внутреннюю митохондриальную мембрану. Ацетил-КоА не может поступать из митохондриального отдела в цитозоль, где он требуется для синтеза жирных кислот или стеролов. Поэтому внутримитохондри- альный ацетил-КоА конвертируется в цитрат-синтазной реакции цикла трикарбоновых кислот и в таком виде поступает в цитозоль.

Похожие статьи