Нормы и оптимальные значения температуры теплоносителя. Температурный график тепловой сети

17.04.2019

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Из цикла статей «Что делать, если холодно в квартире»

Что такое – температурный график?

Температура воды в системе отопления должна поддерживаться в зависимости от фактической температуры наружного воздуха по температурному графику, который разрабатывается специалистами-теплотехниками проектных и энергоснабжающих организаций по специальной методике для каждого источника теплоснабжения с учетом конкретных местных условий. Эти графики должны разрабатываться исходя из требования, чтобы в холодный период года в жилых комнатах поддерживалась оптимальная температура*, равная 20 – 22 °С.

При расчетах графика учитываются потери тепла (температуры воды) на участке от источника теплоснабжения до жилых домов.

Температурные графики должны быть составлены как для теплосети на выходе из источника теплоснабжения (котельной, ТЭЦ), так и для трубопроводов после тепловых пунктов жилых домов (групп домов), т. е. непосредственно на входе в систему отопления дома.

От источников теплоснабжения в тепловые сети подается горячая вода по следующим температурным графикам: *

  • от крупных ТЭЦ:150/70°С, 130/70°С или 105/70°С;
  • от котельных и небольших ТЭЦ: 105/70°С или 95/70°С.

*первая цифра – максимальная температура прямой сетевой воды, вторая цифра – ее минимальная температура.

В зависимости от конкретных местных условий могут быть применены и другие температурные графики.

Так, в г. Москва на выходе из основных источников теплоснабжения применяются графики 150/70°С, 130/70°С и 105/70°С (максимальная/минимальная температура воды в системе отопления).

До 1991 года такие температурные графики ежегодно перед осенне-зимним отопительным сезоном утверждались администрациями городов и других населенных пунктов, что было регламентировано соответствующими нормативно-техническими документами (НТД).

В последующем, к сожалению, эта норма из НТД исчезла, все было отдано на откуп «радеющим за народ», но в то же время не желающим упустить прибыли владельцам котельных, ТЭЦ, других заводов – пароходов.

Однако нормативное требование об обязательности составления температурных графиков отопления восстановлено Федеральным Законом № 190-ФЗ от 27 июля 2010 г «О теплоснабжении ». Вот что в ФЗ-190 регламентируется по температурному графику (статьи Закона расположены автором в их логической последовательности):

«…Статья 23. Организация развития систем теплоснабжения поселений, городских округов
…3. Уполномоченные… органы [см. ст. 5 и 6 ФЗ-190] должны осуществлять разработку, утверждение и ежегодную актуализацию** схем теплоснабжения, которые должны содержать:
…7) Оптимальный температурный график
Статья 20. Проверка готовности к отопительному периоду
…5. Проверка готовности к отопит. периоду теплоснабжающих организаций… осуществляется в целях …готовности указанных организаций к выполнению графика тепловых нагрузок, поддержанию температурного графика, утвержденного схемой теплоснабжения
Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения
1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:
…4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду ;
…6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек…;
Статья 4 , пункт2. К полномочиям фед. органа исп. власти, уполномоченного на реализацию гос. политики в сфере теплоснабжения, относятся:
11) утверждение схем теплоснабжения поселений, гор. округов с численностью населения пятьсот тысяч человек и более…
Статья 29. Заключительные положения
…3. Утверждение схем теплоснабжения поселений … должно быть осуществлено до 31 декабря 2011 г.»

А вот что говорится о температурных графиках отопления в «Правилах и нормах технической эксплуатации жилищного фонда » (утв. Пост. Госстроя РФ от 27.09.2003 № 170):

«…5.2. Центральное отопление
5.2.1. Эксплуатация системы центрального отопления жилых домов должна обеспечивать:
- поддержание оптимальной (не ниже допустимой) температуры воздуха в отапливаемых помещениях;
- поддержание температуры воды, поступающей и возвращаемой из системы отопления в соответствии с графиком качественного регулирования температуры воды в системе отопления (приложение N 11);
- равномерный прогрев всех нагревательных приборов;
5.2.6. В помещении эксплуатационного персонала должны быть:
…д) график температуры подающей и обратной воды в теплосети и в системе отопления в зависимости температуры наружного воздуха с указанием рабочего давления воды на вводе, статического и наибольшего допустимого давления в системе;…»

В связи с тем, что в домовые системы отопления можно подавать теплоноситель с температурой не выше: для двухтрубных систем – 95 °С; для однотрубных - 105°С, на тепловых пунктах (индивидуальных домовых или групповых на несколько домов) перед подачей воды в дома устанавливаются гидроэлеваторные узлы , в которых прямая сетевая вода, имеющая высокую температуру, смешивается с охлажденной обратной водой, возвращающейся из системы отопления дома. После смешивания в гидроэлеваторе вода поступает в домовую систему с температурой по «домовому» температурному графику 95/70 или 105/70°С.

Далее, как пример, приведен температурный график системы отопления после теплового пункта жилого дома для радиаторов по схеме сверху-вниз и снизу-вверх (с интервалами наружной температуры 2 °С), для города с расчетной температурой наружного воздуха 15 °С (Москва, Воронеж, Орел):

ТЕМПЕРАТУРА ВОДЫ В РАЗВОДЯЩИХ ТРУБОПРОВОДАХ, град. C

ПРИ РАСЧЕТНОЙ ТЕМПЕРАТУРЕ НАРУЖНОГО ВОЗДУХА

текущая температура наружного воздуха,

схема подачи воды в радиаторы

"снизу – вверх"

"сверху - вниз"

подающий

обратный

подающий

обратный

Пояснения:
1. В гр. 2 и 4 приведены значения температуры воды в подающем трубопроводе системы отопления:
в числителе - при расчетном перепаде температуры воды 95 - 70 °C;
в знаменателе - при расчетном перепаде 105 - 70 °C.
В гр. 3 и 5 приведены температуры воды в обратном трубопроводе, совпадающие по своим значениям при расчетных перепадах 95 - 70 и 105 - 70 °C.

Температурный график системы отопления жилого дома после теплового пункта

Источник : Правила и нормы технической эксплуатации жилищного фонда, прил. 20
(утв. приказом Госстроя РФ от 26 декабря 1997 г. № 17-139).

С 2003 года действуют «Правила и нормы технической эксплуатации жилищного фонда» (утв. Пост. Госстроя РФ от 27.09.2003 № 170), прил. 11.

Текущая темпера-

тура наружного

Конструкция отопительного прибора

радиаторы

конвекторы

схема подачи воды в прибор

тип конвектора

"сверху - вниз"

температура воды в разводящих трубопроводах, град. C

обрат-ный

подаю-щий

обрат-ный

подаю-щий

обрат-ный

подаю-щий

обрат-ный

подаю-щий

обрат-ный

РАСЧЕТНАЯ ТЕМПЕРАТУРА НАРУЖНОГО ВОЗДУХА

Температурный график системы отопления 95 -70 градусов Цельсия – это самый востребованный температурный график. По большому счёту можно с уверенностью сказать, что все системы центрального отопления работают в этом режиме. Исключением являются только здания с автономным отоплением.

Но и в автономных системах могут быть исключения при использовании конденсационных котлов.

При использовании котлов работающих по конденсационному принципу температурные графики отопления имеют свойство быть ниже.

Применение конденсационных котлов

К примеру, при максимальной нагрузке для конденсационного котла, будет режим 35-15 градусов. Это объясняется тем, что котел добирает теплоту из уходящих газов. Одним словом, при других параметрах, к примеру, тех же 90-70, он не сможет эффективно работать.

Отличительными свойствами конденсационных котлов является:

  • высокое КПД;
  • экономичность;
  • оптимальное КПД при минимальной нагрузке;
  • качество материалов;
  • высокая цена.

Вы много раз слышали, что КПД конденсационного котла около 108%. Действительно, инструкция говорит то же самое.

Но как так может быть, ведь нас ещё со школьной парты учили, что больше 100% не бывает.

  1. Все дело в том, что при подсчете КПД обычных котлов, максимумом берется именно 100% .
    Но обычные просто выкидывают дымовые газы в атмосферу, а конденсационные утилизируют часть уходящей теплоты. Последняя в дальнейшем пойдет на обогрев.
  2. Ту теплоту, которая будет утилизирована и использована по второму кругу и прибавляют к КПД котла . Обычно конденсационный котел утилизирует до 15% дымовых уходящих газов, именно эта цифра и слаживается с КПД котла (примерно 93%). В итоге получается число 108%.
  3. Бесспорно, утилизация теплоты это нужная вещь, но сам котел для такой работы стоит немалых средств .
    Высокая цена котла из-за нержавеющего теплообменного оборудования, которое утилизирует тепло на последнем тракте дымохода.
  4. Если вместо такого нержавеющего оборудования поставить обычное железное, то оно придет в негодность через очень короткий промежуток времени . Так как содержащаяся влага в уходящих газах имеет агрессивные свойства.
  5. Главная особенность конденсационных котлов заключается в том, что они достигают максимальную экономичность при минимальных нагрузках .
    Обычные котлы () наоборот достигают пика экономности при максимальной нагрузке.
  6. Прелесть этого полезного свойства в том, что во время всего отопительного периода, нагрузка на отопление не все время максимальна .
    От силы 5-6 дней обычный котел работает на максимум. Поэтому обычный котел не может сравниться по характеристикам с конденсационным котлом, который имеет максимальные показатели при минимальных нагрузках.

Фото такого котла вы можете увидеть чуть выше, а видео с его работой легко можно найти в интернете.

Обычная система отопления

Можно с уверенностью сказать, что температурный график отопления 95 – 70 наиболее востребован.

Объясняется это тем, что все дома, которые получают теплоснабжение от центральных источников теплоты, рассчитаны под работу по такому режиму. А таких домов у нас более 90%.

Принцип работы такого получения теплоты происходит в несколько этапов:

  • источник теплоты (районная котельная), производит нагрев воды;
  • нагретая вода, через магистральные и распределительные сети движется к потребителям;
  • в доме у потребителей, чаще всего в подвале, через элеваторный узел горячая вода смешивается с водой из системы отопления, так называемой обраткой, температура которой не более 70 градусов, и далее нагревается до температуры 95 градусов;
  • дальше нагретая вода (та которая 95 градусов), проходит через отопительные приборы системы отопления, обогревает помещения и опять возвращается к элеватору.

Совет. Если у вас кооперативный дом или общество совладельцев домов, то вы можете настроить элеватор своими руками, но для этого требуется строго соблюдать инструкцию и правильно выполнить расчет дроссельной шайбы.

Плохой обогрев системы отопления

Очень часто приходится слышать, что отопление у людей работает плохо и у них холодно в помещениях.

Объяснением этому может быть много причин, наиболее распространенные это:

  • график температурный системы отопления не соблюден, возможно, неправильно рассчитан элеватор;
  • домовая система отопления сильно загрязнена, что сильно ухудшает проход воды по стоякам;
  • замулившиеся радиаторы отопления;
  • самовольное изменение системы отопления;
  • плохая теплоизоляция стен и окон.

Часто распространенная ошибка – это неверно рассчитанное сопло элеватора. Вследствие чего функция подмешивания воды и работа всего элеватора в целом нарушена.

Такое могло произойти по нескольким причинам:

  • халатности и необученности персонала по эксплуатации;
  • неверно выполненными расчетами в техническом отделе.

В течение многих лет эксплуатации систем отопления, люди редко задумываются о надобности прочистки своих систем теплообеспечения. По большому счету это касается зданий, которые построены во времена советского союза.

Все системы отопления должны проходить гидропневматическую промывку перед каждым отопительным сезоном. Но это соблюдается только на бумаге, так как ЖЕКи и прочие организации выполняют эти работы только на бумаге.

Вследствие этого засоряются стенки стояков, а последние становятся меньше в диаметре, что нарушает гидравлику всей системы отопления в целом. Уменьшается количество пропускаемой теплоты, то есть кому- то её попросту не хватает.

Выполнить гидропневматическую продувку можно и своими руками, достаточно иметь компрессор и желание.

То же самое касается и чистки радиаторов отопления. За многие годы эксплуатации радиаторы внутри скапливают много грязи, ила и прочих дефектов. Периодически, хотя бы раз в три года, нужно их отсоединять и промывать.

Грязные радиаторы сильно ухудшают тепловую отдачу в вашем помещении.

Самый распространенный момент – это самовольное изменение и перепланировка систем отопления. При замене металлических старых труб на металлопластиковые не соблюдаются диаметры. А то и вообще добавляются различные изгибы, что увеличивает местные сопротивления и ухудшает качество отопления.

Очень часто при такой самовольной реконструкции и меняется и число секций радиаторов. И действительно, почему бы не поставить себе побольше секций? Но в итоге ваш сосед по дому, живущий после вас получит меньше необходимой ему теплоты для обогрева. А сильней всего пострадает последний сосед, который недополучит теплоту больше всех.

Немаловажную роль играет термическое сопротивление ограждающих конструкций, окон и дверей. Как показывает статистика, через них может уходить до 60% теплоты.

Элеваторный узел

Как уже мы говорили выше, все водоструйные элеваторы предназначены для подмешивания воды из подающей магистрали тепловых сетей в обратку системы отопления. Благодаря этому процессу создается циркуляция системы и напор.

Что касается материала применяемого для их изготовления, то применяют и чугун, и сталь.

Рассмотрим принцип работы элеватора по фото приведенному ниже.

Через патрубок 1 вода из тепловых сетей проходит через сопло эжектора и с большой скоростью попадает в камеру смешения 3. Там к ней подмешивается вода из обратки системы отопления здания, последняя подается через патрубок 5.

Вода, которая получилась в итоге, направляется в подачу системы отопления через диффузор 4.

Для того чтобы элеватор правильно функционировал, нужно чтобы горловина его была верно подобрана. Чтобы это сделать производятся вычисления с помощью формулы ниже:

Где ΔРнас — расчётное циркуляционное давление в системе отопления, Па;

Gсм- расход воды в отопительной системе кг/ч.

К сведению!
Правда, для такого расчета понадобиться схема отопления здания.

В статье мы выясним, как рассчитывается среднесуточная температура при проектировании систем отопления, как зависит от температуры на улице температура теплоносителя на выходе из элеваторного узла и какой может быть температура батарей отопления зимой.

Затронем мы и тему самостоятельной борьбы с холодом в квартире.

Холод зимой — больная тема для многих обитателей городских квартир.

Общая информация

Здесь мы приведем основные положения и выдержки из действующих СНиП.

Температура наружного воздуха

Расчетная температура отопительного периода, которая закладывается в проект систем отопления — это ни много ни мало усредненная температура наиболее холодных пятидневок за восемь самых холодных зим из последних 50 лет.

Такой подход позволяет, с одной стороны, быть готовыми к сильным морозам, которые случаются лишь раз в несколько лет, с другой — не вкладывать в проект излишних средств. В масштабах массовой застройки речь идет о весьма значительных суммах.

Целевая температура в помещении

Стоит сразу оговорить, что на температуру в помещении влияет не только температура теплоносителя в системе отопления.

Параллельно действует несколько факторов:

  • Температура воздуха на улице . Чем она ниже — тем больше утечка тепла через стены, окна и крыши.
  • Наличие или отсутствие ветра . Сильный ветер увеличивает теплопотери зданий, продувая через неуплотненные двери и окна подъезды, подвалы и квартиры.
  • Степень утепления фасада, окон и дверей в помещении . Понятно, что в случае герметично закрывающегося металлопластикового окна с двухкамерным стеклопакетом потери тепла будут куда ниже, чем с рассохшимся деревянным окном и остеклением в две нитки.

Любопытно: сейчас наметилась тенденция именно к строительству многоквартирных домов с максимальной степенью термоизоляции.
В Крыму, где живет автор, новые дома строятся сразу с утеплением фасада минеральной ватой или пенопластом и с герметично закрывающимися дверями подъездов и квартир.

  • И, наконец, собственно температура радиаторов отопления в квартире .

Итак, каковы действующие нормативы температур в помещениях разного назначения?

  • В квартире: угловые комнаты — не ниже 20С, прочие жилые комнаты — не ниже 18С, ванная комната — не ниже 25С.
    Нюанс: при расчетной температуре воздуха ниже -31С для угловой и прочих жилых комнат берутся более высокие значения, +22 и +20С (источник — постановление Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»).
  • В детском саду: 18-23 градуса в зависимости от назначения помещения для туалетов, спален и игровых комнат; 12 градусов для прогулочных веранд; 30 градусов для помещений бассейнов.
  • В учебных заведениях: от 16С для спален школ-интернатов до +21 в классных помещениях.
  • В театрах, клубах, прочих увеселительных заведениях: 16-20 градусов для зрительного зала и +22С для сцены.
  • Для библиотек (читальных залов и книгохранилищ) норма — 18 градусов.
  • В продовольственных магазинах нормальная зимняя температура 12, а в непродовольственных — 15 градусов.
  • В спортзалах поддерживается температура 15-18 градусов.

  • В больницах поддерживаемая температура зависит от назначения помещения. Скажем, рекомендованная температура после отопластики или родов — +22 градуса, в палатах для недоношенных детей поддерживается +25, а для больных тиреотоксикозом (избыточным выделением гормонов щитовидной железой) — 15С. В хирургических палатах норма — +26С.

Температурный график

Какой должна быть температура воды в трубах отопления?

Она определяется четырьмя факторами:

  1. Температурой воздуха на улице.
  2. Типом системы отопления. Для однотрубной системы максимальная температура воды в системе отопления согласно действующим нормам — 105 градусов, для двухтрубной — 95. Максимальный перепад температур между подачей и обраткой — соответственно 105/70 и 95/70С.
  3. Направлением подачи воды в радиаторы. Для домов верхнего розлива (с подачей на чердаке) и нижнего (с попарной закольцовкой стояков и расположением обеих ниток в подвале) температуры различаются на 2 — 3 градуса.
  4. Типом отопительных приборов в доме. Радиаторы и имеют разную теплоотдачу; соответственно, для обеспечения одинаковой температуры в помещении температурный режим отопления должен различаться.

Итак, какой должна быть температура отопления — воды в трубах подачи и обратки — при разных уличных температурах?

Приведем лишь небольшую часть температурной таблицы для расчетной температуры окружающего воздуха -40 градусов.

  • При нуле градусов температура подающего трубопровода для радиаторов с разной разводкой — 40-45С, обратного — 35-38. Для конвекторов 41-49 подача и 36-40 обратка.
  • При -20 для радиаторов подача и обратка должны иметь температуру 67-77/53-55С. Для конвекторов 68-79/55-57.
  • При -40С на улице для всех отопительных приборов температура достигает максимально допустимой: 95/105 в зависимости от типа системы отопления на подаче и 70С на обратном трубопроводе.

Полезные дополнения

Для понимания принципа работы системы отопления многоквартирного дома, разделения зон ответственности, нужно знание еще нескольких фактов.

Температура теплотрассы на выходе с ТЭЦ и температура отопления в системе вашего дома — это абсолютно разные вещи. При тех же -40 ТЭЦ или котельная будет выдавать около 140 градусов на подаче. Вода не испаряется только благодаря давлению.

В элеваторном узле вашего дома часть воды из обратного трубопровода, возвращающаяся из системы отопления, подмешивается к подаче. Сопло впрыскивает струю горячей воды с большим давлением в так называемый элеватор и вовлекает массы остывшей воды в повторную циркуляцию.

Зачем это нужно?

Чтобы обеспечить:

  1. Разумную температуру смеси . Напомним: температура отопления в квартире не может превышать 95-105 градусов.

Внимание: для детских садов действует другая норма температуры: не выше 37С. Низкую температуру отопительных приборов приходится компенсировать большой площадью теплообмена.
Именно поэтому в детских садах стены украшены радиаторами столь большой длины.

  1. Большой объем воды, вовлеченной в циркуляцию . Если убрать сопло и пустить воду с подачи напрямую — температура обратки будет мало отличаться от подачи, что резко увеличит потери тепла на трассе и нарушит работу ТЭЦ.

Если заглушить подсос воды с обратки — циркуляция станет настолько медленной, что обратный трубопровод зимой может просто перемерзнуть.

Зоны ответственности разделены так:

  • За температуру воды, нагнетаемой в теплотрассы, отвечает производитель тепла — местная ТЭЦ или котельная;
  • За транспортировку теплоносителя с минимальными потерями — организация, обслуживающая тепловые сети (КТС — коммунальные тепловые сети).

  • За обслуживание и настройку элеваторного узла — ЖЭУ . При этом, однако, диаметр сопла элеватора — то, от чего зависит температура радиаторов — согласовывается с КТС.

Если у вас дома холодно и все отопительные приборы — те, что установлены строителями, вы урегулируете этот вопрос с жилищниками. Рекомендованные санитарными нормами температуры они обязаны обеспечить.

Если вами предпринята какая-либо модификация системы отопления, например, — тем самым вы берете на себя всю полноту ответственности за температуру в вашем жилье.

Как бороться с холодом

Будем, однако, реалистами: чаще всего решать проблему холода в квартире приходится самим, своими руками. Не всегда жилищная организация может обеспечить вас теплом в разумные сроки, да и санитарные нормы удовлетворят не каждого: хочется, чтобы дома было тепло.

Как будет выглядеть инструкция по борьбе с холодом в многоквартирном доме?

Перемычки перед радиаторами

Перед отопительными приборами в большинстве квартир стоят перемычки, которые призваны обеспечить циркуляцию воды в стояке при любом состоянии радиатора. Долгое время они снабжались трехходовыми кранами, затем стали ставиться без какой-либо запорной арматуры.

Перемычка в любом случае уменьшает циркуляцию теплоносителя через отопительный прибор. В том случае, когда ее диаметр равен диаметру подводки, эффект особенно выражен.

Простейший способ сделать свою квартиру теплее — врезать в саму перемычку и подводку между ней и радиатором дроссели.

С их помощью возможна удобная регулировка температуры батарей отопления: при перекрытой перемычке и открытом полностью дросселе на радиатор температура максимальна, стоит открыть перемычку и прикрыть второй дроссель — и жара в комнате сходит на нет.

Большое достоинство такой доработки — минимальная стоимость решения. Цена дросселя не превышает 250 рублей; сгоны, муфты и контргайки и вовсе стоят копейки.

Важно: если ведущий к радиатору дроссель хоть немного прикрыт, дроссель на перемычке открывается полностью. Иначе регулировка температуры отопления выльется в остывшие у соседей батареи и конвектора.

Теплые полы

Даже если радиатор в комнате висит на возвратном стояке с температурой около 40 градусов, с помощью модификации отопительной системы можно сделать комнату теплой.

Выход — низкотемпературные системы отопления.

В городской квартире трудно применить из-за ограниченности высоты помещения: подъем уровня пола на 15-20 сантиметров будет означать вовсе уж низкие потолки.

Куда более реальный вариант — теплый пол. За счет куда большей площади теплоотдачи и более рационального распределения тепла в объеме комнаты низкотемпературное отопление прогреет комнату лучше, чем раскаленный радиатор.

Как выглядит реализация?

  1. На перемычку и подводку так же, как в предыдущем случае, ставятся дроссели.
  2. Отвод от стояка на отопительный прибор подключается к металлопластиковой трубе, которая укладывается в стяжку на полу.

Чтобы коммуникации не портили внешний вид комнаты, они убираются в короб. Как вариант — врезка в стояк переносится ближе к уровню пола.

Заключение

Дополнительную информацию о работе централизованных систем отопления вы сможете найти в видео в конце статьи. Теплых зим!

Похожие статьи