Элеваторный узел системы отопления: что это такое, принцип работы. Предназначение элеваторного узла системы отопления

18.04.2019

Обеспечение жилых домов и общественных зданий теплом – одна из главнейших задач коммунальных служб городов и поселков. Современные системы теплоснабжения – эта сложные комплексы, включавшие поставщиков тепла (ТЭЦ или котельные), разветвлённую сеть магистральных трубопроводов , специальные распределительные теплопункты , от которых идут ответвления к конечным потребителям.

Однако, подающийся по трубам к зданиям теплоноситель не напрямую попадает во внутридомовую сеть и конечные точки теплообмена – радиаторы отопления. В любом доме имеется собственный тепловой узел, в котором производится соответствующая регулировка уровня давления и температуры воды. Здесь установлены специальные устройства, выполняющие эту задачу. В последнее время все чаще устанавливается современное электронное оборудование, которое позволяет в автоматическом режиме контролировать необходимые параметры и вносить соответствующие коррективы. Стоимость подобных комплексов – весьма высока, они напрямую зависят от стабильности электропитания, поэтому нередко эксплуатирующими жилой фонд организациямиотдается предпочтение старой проверенной схеме локальной регулировки температуры теплоносителя на входе в домовую сеть. И основным элементом подобной схемы является элеваторный узел системы отопления.

Цель настоящей статьи – дать понятие об устройстве и принципе работы самого элеватора, о его месте в системе и выполняемых им функциях. Кроме того, заинтересованные читатели получат урок по самостоятельному расчету этого узла.

Общие краткие сведения о системах теплоснабжения

Чтобы правильно понять важность элеваторного узла, наверное, необходимо для начала кратко рассмотреть, как же работают центральные системы теплоснабжения.

Источником тепловой энергии являются ТЭЦ или котельные, в которых осуществляется разогрев теплоносителя до нужной температуры за счёт использования того или иного вида топлива (уголь, нефтепродукты, природный газ и т.п .) Оттуда теплоноситель прокачивается по трубам к точкам потребления.

ТЭЦ или крупная котельная рассчитана на обеспечение теплом определенного района, порой – с очень немалой территорией. Системы трубопроводов получаются весьма протяжёнными и разветвленными . Как минимизировать потери тепла и равномерно распределить его по по требителям, так, чтобы, например, наиболее удаленные от ТЭЦ здания не испытывали недостаточности в нем ? Это достигается тщательной термоизоляцией тепловых магистралей и поддержанием в них определенного теплового режима.

На практике используется несколько теоретически рассчитанных и практически проверенных температурных режимов функционирования котельных, которые обеспечивают и передачу тепла на значительные расстояния без существенных потерь, и максимальную эффективность, и экономичность работы котельного оборудования. Так, к примеру, применяются режимы 150/70, 130/70, 95/70 (температура воды в магистрали подачи / температура в «обратке »). Выбор конкретного режима зависит от климатического пояса региона и от конкретного уровня текущей зимней температуры воздуха.

1 – Котельная или ТЭЦ.

2 – Потребители тепловой энергии.

3 – Магистраль подачи разогретого теплоносителя.

4 – Магистраль «обратки ».

5 и 6 – Ответвления от магистралей к зданиям – потребителям.

7 – внутридомовые тепловые распределительные узлы.

От магистралей подачи и «обратки » идут ответвления в каждое здание, подключенное к данной сети. Но вот здесь сразу возникают вопросы.

  • Во-первых, разным объектам требуется различное количество тепла – не сравнить, к примеру, огромную жилую высотку и небольшое малоэтажное здание.
  • Во-вторых, температура воды в магистрали не соответствует допустимым нормам для подачи непосредственно на теплообменные приборы. Как видно из приведенных режимов, температура очень часто даже превышает точку кипения, и вода поддерживается в жидком агрегатном состоянии только лишь за счет высокого давления и герметичности системы.

Использование столь критичных температур в отапливаемых помещениях – недопустимо. И дело не только в избыточности поступления тепловой энергии – это чрезвычайно опасно. Любое прикосновение к разогретым до такого уровня батареям вызовет сильный ожог тканей, а в случае даже небольшой разгерметизации теплоноситель мгновенно превращается в горячий пар, что может повлечь очень серьезные последствия.

Правильный выбор радиаторов отопления – чрезвычайно важен!

Не все радиаторы отопления одинаковы. Дело не только и не столько в материале изготовления и внешнем виде. Они могут значительно различаться своими эксплуатационными характеристиками, адаптацией к той или иной системе отопления.

Как правильно подойти к

Таким образом, на локальном тепловом узле дома необходимо снизить температуру и давление до расчетных эксплуатационных уровней, обеспечив при этом требуемый отбор тепла, достаточный для нужд отопления конкретного здания. Эту роль выполняет специальное теплотехническое оборудование. Как уже говорилось, это могут быть современные автоматизированные комплексы, но очень часто отдается предпочтение проверенной схеме элеваторного узла.

Если заглянуть на тепловой распределительный пункт зд ания (чаще всего они располагаются в подвале, в точке входа магистральных тепловых сетей), то можно увидеть узел, в котором явно видна перемычка между трубами подачи и «обратки ». Именно здесь и стоит сам элеватор, об устройстве и принципе работы будет рассказано ниже.

Как устроен и работает элеватор отопления

Внешне сам элеватор топления представляет собой чугунную или стальную конструкцию, снабженную тремя фланцами для врезки в систему.

Посмотрим на его строение внутри.

Перегретая вода из тепловой магистрали попадает во входной патрубок элеватора (поз. 1). Перемещаясь под давлением вперед , она проходит через узкое сопло (поз. 2). Резкое повышение скорости потока на выходе из сопла приводит к эффекту инжекции - в приемной камере (поз. 3) создается зона разряжения. В эту область пониженного давления по законам термодинамики и гидравлики буквально «засасывается» вода из патрубка (поз. 4), подключенного к трубе «обратки ». В результате в смесительной горловине элеватора (поз. 5) происходит перемешивание горячего и охлажденного потоков, вода получает необходимую для внутренней сети температуру, снижается давление до безопасного для теплообменных приборов уровня, а затем теплоноситель через диффузор (поз. 6) попадает в систему внутренней разводки.

Помимо понижения температуры, инжектор выполняет роль своеобразного насоса – он создае т т ребуемый напор воды, который необходим для обеспечения ее циркуляции во внутридомовой разводке, с преодолением гидравлического сопротивления системы.

Как видно, система чрезвычайно проста, но очень эффективна, что и обуславливает ее широкое применение даже в условиях конкуренции с современным высокотехнологичным оборудованием.

Безусловно, элеватор нуждается в определенной обвязке. Примерная схема элеваторного узла приведена на схеме:

Разогретая вода из тепловой магистрали поступает по трубе подачи (поз. 1), и возвращается в нее по трубе обратки (поз. 2). От магистральных труб внутридомовая система может отключаться с помощью задвижек (поз. 3). Вся сборка отдельных деталей и устройств осуществляется с применением фланцевых соединений (поз. 4 ).

Регулировочное оборудование весьма чувствительно к чистоте теплоносителя, поэтому на входе и выходе из системы монтируются фильтры грязевики (поз. 5), прямого или «косого» типа. В них оседают т вердые нерастворимые включения и грязь, попавшая в полость труб. Периодически проводится очистка грязевиков от собранных осадков.

Фильтры-«грязевики», прямого (снизу) и «косого» типа

На определенных участках узла установлены контрольно-измерительные приборы. Это манометры (поз. 6), позволяющие контролировать уровень давления жидкости в трубах. Если на входе давление может достигать 12 атмосфер, то уже на выходе из элеваторного узла оно значительно ниже, и зависит от этажности здания и количества точек теплообмена в нем .

Обязательно стоят термодатчики – термометры (поз. 7), контролирующие уровень температуры теплоносителя: на входе их централи – t ц , входе во внутридомовую систему – t с , на «обратках » системы и централи – t ос и t оц .

Далее, установлен сам элеватор (поз. 8). Правила его монтажа требуют обязательного наличия прямого участка трубопровода не менее 250 мм. Одним, входным патрубком он через фланец соединен к подающей трубе из централи, противоположным – к трубе внутридомовой разводки (поз. 11). Нижний патрубок с фланцем подключен через перемычку (поз. 9) к трубе «отбратки » (поз. 12).

Для проведения профилактических или аварийно-ремонтных работ предусматриваются задвижки (поз. 10), полностью отключающие элеваторный узел от внутридомовой сети. На схеме не показаны, но на практике обязательно присутствуют специальные элементы для дренирования – слива воды из внутридомовой системы при возникновении такой необходимости.

Безусловно, схема дана в очень упрощенном виде, но она в полной мере отражает базовое устройство элеваторного узла. Широкими стрелками показаны направления потоков теплоносителя с разными уровнями температур.

Бесспорными преимуществами использования элеваторного узла для регулировки температуры и давления теплоносителя являются:

  • Простота конструкции при безотказности в эксплуатации.
  • Невысокая стоимость комплектующих и их монтажа.
  • Полная энергонезависимость подобного оборудования.
  • Использование элеваторных узлов и приборов учета тепла позволяют достичь экономии в расходе потребленного теплоносителя до 30%.

Есть, конечно, и весьма значимые недостатки:

  • Каждой системе требуется индивидуальный расчет для подбора требуемого элеватора.
  • Необходимость обязательного перепада давления на входе и выходе.
  • Невозможность точных плавных регулировок при текущем изменении параметров системы.

Последний недостаток – достаточно условен, так как на практике часто применяются элеваторы, в которых предусмотрена возможность изменения его рабочих характеристик.

Для этого в приемной камере с соплом (поз. 1) установлена специальная игла – конусовидный стержень (поз. 2), который уменьшает сечение сопла. Этот стержень в блоке кинематики (поз . 3) через реечную зубчатую передачу (поз . 4 5) связан с регулировочным валом (поз . 6). Вращение вала вызывает перемещение конуса в полости сопла, увеличивая или уменьшая просвет для прохода жидкости. Соответственно, меняются и рабочие параметры всего элеваторного узла.

В зависимости от уровня автоматизации системы, могут применяться различные типы регулируемых элеваторов.

Так, передача вращения может осуществляться вручную – ответственный специалист отслеживает показания контрольно-измерительных приборов и вносит коррективы в работу системы, ориентируясь на на несенную около маховика (рукоятки) шкалу.

Другой вариант – когда элеваторный узел завязан на электронную систему контроля и управления. Показания снимаются в автоматическом режиме, блок управления вырабатывают сигналы для передачи их на сервоприводы, через которых вращение передается на кинематический механизм регулируемого элеватора.

Что нужно знать о теплоносителях?

В системах отопления, особенно — в автономных, в качестве теплоносителя может использоваться не только вода.

Какими качествами должен обладать , и как правильно его выбрать — в специальной публикации портала.

Расчет и подбор элеватора системы отопления

Как уже говорилось, для каждого здания требуется определенное количеств тепловой энергии. Это означает что необходим определенный расчёт элеватора, исходя из заданных условий эксплуатации системы.

К исходным данным можно отнести:

  1. Значения температуры:

— на входе их тепловой централи;

— в «обратке» тепловой централи;

рабочее значение для внутридомовой системы отопления;

— в обратной трубе системы.

  1. Общее количество тепла, потребное для отопления конкретного дома.
  2. Параметры, характеризующие особенности внутридомовой разводки отопления.

Порядок расчета элеватора установлен специальным документом – «Сводом правил по проектированию Минстроя РФ», СП 41-101-95, касающимся именно проектирования тепловых пунктов. В этом нормативном руководстве приведены формулы расчета , но они – достаточно «тяжеловесные», и приводить их в статье – нет особой необходимости.

Те читатели, которых мало интересуют вопросы расчета , могут смело пропустить этот раздел статьи. А тем, кто желает самостоятельно рассчитать элеваторный узел, можно порекомендовать потратить 10 ÷ 15 минут времени, чтобы создать собственный калькулятор, основанный на формулах СП, позволяющий проводить точные подсчеты буквально за считаные секунды.

Создание калькулятора для расчета

Для работы потребуется обычное приложение Excel, которое есть, наверное, у каждого пользователя – оно входит в базовый пакет программ MicrosoftOffice. Составление калькулятора не представит особого труда даже для тех пользователей, которые никогда не сталкивались с вопросами элементарного программирования.

Рассмотрим пошагово:

(если часть текста в таблице выходит за рамки, то внизу есть «движок» для горизонтальной прокрутки)

Иллюстрация Краткое описание выполняемой операции
Откройте новый файл (книгу) в приложении Excel пакета Microsoft Office.
В ячейке А1 наберите текст «Калькулятор для расчета элеватора системы отопления».
Ниже, в ячейке А2 набираем «Исходные данные».
Надписи можно "поднять", изменяя жирность, размер или цвет шрифта.
Ниже расположатся строки с ячейками для ввода исходных данных, на основании которых и будет проводиться расчет элеватора.
Заполняем текстом ячейки с А3 по А7 :
А3 – «Температура теплоносителя, градусы С:»
А4 – «в подающей трубе тепловой централи»
А5 – «в обратке тепловой централи»
А6 – «необходимая для внутридомовой системы отопления»
А7 – «в обратке системы отопления»
Для наглядности можно пропустить строку, а ниже, в ячейку А9 вносим текст «Необходимое количество тепла для системы отопления, кВт»
Пропускаем еще строку, и в ячейку А11 впечатываем «Коэффициент сопротивления системы отопления дома, м».
Чтобы текст из столбца А не находил на столбец В , куда будут в дальнейшем вноситься данные, столбец А можно раздвинуть на необходимую ширину (показано стрелкой).
Область ввода данных, от А2-В2 до А11-В11 можно выделить и сделать заливку цветом. Так она будет отличаться от другой области, где будут выдаваться результаты вычислений.
Пропускаем еще одну строку и вводим в ячейку А13 «Результаты расчета:»
Можно выделить текст другим цветом.
Далее, начинается самый ответственный этап. Помимо ввода текста в ячейки столбца А , в рядом стоящие ячейки столбца В вписываются формулы, в соответствии с которыми и будут проводиться расчеты.
Формулы следует переносить в точности, как это будет указано, безо всяких лишних пробелов.
Важно: формула вводится в русской раскладке клавиатуры, за исключением имен ячеек – они вводятся исключительно в латинской раскладке. Для того, чтобы не ошибиться с этим, в приведенных примерах формул имена ячеек будут выделены жирным шрифтом.
Итак, в ячейке А14 набираем текст «Температурный перепад тепловой централи, градусов С». в ячейку В14 вносим следующее выражение
=(B4 -B5 )
И осуществлять ввод, и контролировать его правильность удобнее в строке формул (зеленая стрелка).
Пусть вас не смущает то, что в ячейке В14 сразу появилось какое-то значение (в данном случае «0», синяя стрелка), просто программа сразу отрабатывает формулу, опираясь пока на пустые ячейки ввода.
Заполняем следующую строку.
В ячейке А15 – текст «Температурный перепад системы отопления, градусов С», а в ячейке В15 – формула
=(B6 -B7 )
Следующая строка. В ячейке А16 – текст: «Необходимая производительность системы отопления, куб.м/час».
Ячейка В16 должна содержать следующую формулу:
=(3600*B9 )/(4,19*970*B14 )
Появится сообщение об ошибке, «деление на ноль» - не обращаем внимания, это просто оттого, что не внесены исходные данные.
Идем ниже. В ячейке А17 – текст: «Коэффициент смешения элеватора».
Рядом, в ячейке В17 – формула:
=(B4 -B6 )/(B6 -B7 )
Далее, ячейка А18 – «Минимальный напор теплоносителя перед элеватором, м».
Формула в ячейке В18 :
=1,4*B11 *(СТЕПЕНЬ((1+B17 );2))
Не сбейтесь с количеством скобок – это важно
Следующая строка. В ячейке А19 текст: «Диаметр горловины элеватора, мм».
Формула в ячейке В18 следующая:
=8,5*СТЕПЕНЬ((СТЕПЕНЬ(B16 ;2)*СТЕПЕНЬ(1+B17 ;2))/B11 ;0,25)
И последняя строка расчётов.
В ячейке А20 вводится текст «Диаметр сопла элеватора, мм».
В ячейке В20 – формула:
=9,6*СТЕПЕНЬ(СТЕПЕНЬ(B16 ;2)/B18 ;0,25)
По сути, калькулятор готов. Можно только его несколько «модернизировать, чтобы он был удобнее в работе, и не было риска случайно удалить формулу.
Для начала, выделим область от А13-В13 до А20-В20 , и зальем ее другим цветом. Кнопка заливки показана стрелкой.
Теперь выделяем общую область с А2-В2 по А20-В20 .
В выпадающем меню «границы» (показано стрелкой) выбираем пункт «все границы» .
Наша таблица получает стройное обрамление линиями.
Теперь нужно сделать так, чтобы значения вручную можно было ввести только лишь в те ячейки, которые для этого предназначены (чтобы не стереть или не нарушить случайно формулы).
Выделяем диапазон ячеек от В4 до В11 (красные стрелки). Заходим в меню «формат» (зеленая стрелка) и выбираем пункт «формат ячеек» (синяя стрелка).
В открывшемся окне выбираем последнюю вкладку – «защита» и в окошке «защищаемая ячейка» убираем галочку.
Теперь вновь идем в меню «формат» , и выбираем в нем пункт «защитить лист» .
Появится небольшое окошко, в котором останется всего лишь нажать кнопку «ОК» . Предложение ввести пароль просто игнорируем – в нашем документе такая степень защиты не нужна.
Теперь можно быть уверенным, что никакого сбоя не будет – для изменения открыты только лишь ячейки в столбце В в области ввода значений.
При попытке внести хоть что-нибудь в любые другие ячейки появится окно с предупреждением о невозможности такой операции.
Калькулятор готов.
Осталось лишь сохранить файл. – и он всегда будет готов к проведению расчета.

Провести подсчет в созданном приложении – не составляет никакого труда. Достаточно лишь заполнить известными значениями область ввода – дальше программа все рассчитает в автоматическом режиме.

  • Температуру подачи и «обратки» в тепловой централи можно узнать в ближайшем к дому теплопункте (котельной).
  • Требуемая температура теплоносителя во внутридомовой системе в большей мере зависит от того, какие теплообменные приборы установлены в квартирах.
  • Температура в трубе «обратки» системы чаще всего принимается равной аналогичному показателю в централи.
  • Потребность дома в общем притоке тепловой энергии зависит от количества квартир, точек теплообмена (радиаторов), особенностей здания – степени его утепленности , объема помещений, количества общих теплопотерь и т.п . Обычно эти данные рассчитываются заблаговременно еще на стадии проектирования дома или при проведении реконструкции системы его отопления.
  • Коэффициент сопротивления внутреннего контура отопления дома рассчитывается по отдельным формулам, с учетом особенностей системы. Однако, не будет большой ошибкой взять и усредненные значения, приведенные в таблице ниже:
Типы многоквартирных жилых домов Значение коэффициента, м
Многоквартирные дома старой постройки, с контурами отопления из стальных труб, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 1
Дома, введенные в эксплуатацию или в которых проведен капитальный ремонт в период до 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах 3 ÷ 4
Дома, введенные в эксплуатацию либо после капитального ремонта в период после 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 2
То же самое, но с установленными приборами регулировки температуры и расхода теплоносителя на стояках и радиаторах 4 ÷ 6

Проведение расчетов и подбор нужной модели элеватора

Попробуем калькулятор в действии.

Допустим, что температура в подающей трубе тепловой централи – 135, а в обратной – 70 °С . Планируется поддерживать в системе отопления дома температуру в 85 ° С , на выходе – 70 °С . Для качественного обогрева всех помещений необходима тепловая мощность в 80 кВт. По таблице определено, что коэффициент сопротивления равен «1».

Подставляем эти значения в соответствующие строки калькулятора, и сразу же получаем необходимые результаты:

В итоге имеем данные для подбора нужной модели элеватора и условия для его корректной работы. Так, получена требуемая производительность системы – количество теплоносителя, прокачиваемого в единицу времени, минимальный напор водяного столба. И самые основные величины – это диаметры сопла элеватора и его горловины (смесительной камеры).

Диаметр сопла принято округлять до сотых долей миллиметра в меньшую сторону (в данном случае – 4,4 мм). Минимальное значение диаметра должно быть 3 мм – в противном случае сопло просто будет быстро забиваться.

Калькулятор позволяет и «поиграть» значениями, то есть посмотреть, как они будут изменяться при изменении исходных параметров. Например, если температура в теплоцентрали понижена, скажем, до 110 градусов, то это повлечет и другие параметры узла.

Как видно, диаметр сопла элеватора уже составляет 7,2 мм.

Это дает возможность выбора устройства с наиболее приемлемыми параметрами, с определенным диапазоном регулировок, или же комплекта сменных сопел для конкретной модели.

Имея рассчитанные данные, уже можно обратиться к таблицам предприятий-изготовителей подобного оборудования для выбора требуемого варианта исполнения.

Обычно в этих таблицах, помимо рассчитанных величин, приводятся и другие параметры изделия – его габариты, размеры фланцев, масса и пр .

Для примера – водоструйные стальные элеваторы серии 40с10бк :

Фланцы: 1 – на входе, 1— 1 – на врезке трубы из «обратки» , 1— 2 – на выходе.

2 – входной патрубок.

3 – съемное сопло.

4 – приемная камера.

5 – смесительная горловина.

7 – диффузор.

Основные параметры сведены в таблицу – для удобства выбора:

Номер
элеватора
Размеры, мм Масса,
кг
Примерный
расход воды
из сети,
т/ч
dc D D1 D2 l L1 L
1 3 15 110 125 125 90 110 425 9,1 0,5-1
2 4 20 110 125 125 90 110 425 9,5 1-2
3 5 25 125 160 160 135 155 626 16,0 1-3
4 5 30 125 160 160 135 155 626 15,0 3-5
5 5 35 125 160 160 135 155 626 14,5 5-10
6 10 47 160 180 180 180 175 720 25 10-15
7 10 59 160 180 180 180 175 720 34 15-25

При этом производитель допускает самостоятельную замену сопла с нужным диаметром в определенном диапазоне:

Модель элеватора, № Возможный диапазон смены сопла, Ø мм
№1 min 3 мм, max 6 мм
№2 min 4 мм, max 9 мм
№3 min 6 мм, max 10 мм
№4 min 7 мм, max 12 мм
№5 min 9 мм, max 14 мм
№6 min 10 мм, max 18 мм
№7 min 21 мм, max 25 мм

Подобрать требуемую модель, имея на руках результаты расчета – не представит особого труда.

При монтаже элеватора или при проведении профилактических работ следует обязательно учитывать, что от правильности установки и целостности деталей напрямую зависит эффективность работы узла.

Так, конус сопла (стакан) должен быть установлен строго соосно с камерой смешения (горловиной ). Сам стакан в посадочное гнездо элеватора должен входить свободно, чтобы была возможность его извлечения для ревизии или замены.

При проведении ревизий следует обращать особое внимание на состояние поверхностей отделов элеватора. Даже наличие фильтров не исключает абразивного воздействия жидкости, плюс к этому никуда не деться от эрозийных процессов и коррозии. Сам рабочий конус должен иметь отполированную внутреннюю поверхность, ровные, неизношенные края сопла. При необходимости производится его замена на новую деталь.

Несоблюдение таких требований влечет снижение КПД узла и падение давления, необходимого для циркуляции теплоносителя во внутридомовой разводке отопления. Кроме того, износ сопла, его загрязнение или слишком большой диаметр (существенно выше расчётного), приведут к появлению сильных гидравлических шумов, которые по трубам отопления будут передаваться в жилые помещения здания.

Конечно, система отопления дома с простейшим элеваторным узлом – далеко не образец совершенства. Она весьма тяжело поддается регулировке, которая требует разборки узла и замены инжекторного сопла. Поэтому оптимальным вариантом видится, все же, модернизация с установкой регулируемых элеваторов, позволяющих изменять параметры смешения теплоносителя в определенном диапазоне.

А как регулировать температуру в квартире?

Температура теплоносителя во внутридомовой сети может быть избыточна для отдельно взятой квартиры, например, если в ней используются «теплые полы». Значит, потребуется установка собственного оборудования, которое поможет поддерживать степень нагрева на нужном уровне.

Варианты, как – в специальной статье нашего портала.

И напоследок – видео с компьютерной визуализацией устройства и принципа действия элеватора отопления:

Видео: устройство и работа элеватора отопления

При централизованном теплоснабжении горячая вода, прежде чем попасть в радиаторы отопления многоквартирных домов, проходит через тепловой пункт. Там она доводится до необходимой температуры с помощью специального оборудования. С этой целью в подавляющем большинстве домовых тепловых пунктов, построенных во времена СССР, установлен такой элемент, как элеватор отопления. Рассказать, что он собой представляет и какие задачи выполняет, призвана данная статья.

Назначение элеватора в системе отопления

Теплоноситель, выходящий из котельной или ТЭЦ, имеет высокую температуру – от 105 до 150 °С. Естественно, что подавать в систему отопления воду с такой температурой недопустимо.

Нормативными документами эта температура ограничена пределом 95 °С и вот почему:

  • в целях безопасности: можно получить ожоги от прикосновения к батареям;
  • не всякие радиаторы могут функционировать при высоких температурных режимах, не говоря уже о полимерных трубах.

Снизить температуру сетевой воды до нормируемого уровня позволяет работа элеватора отопления. Вы спросите – а почему нельзя сразу направить в дома воду с требуемыми параметрами? Ответ лежит в плоскости экономической целесообразности, подача перегретого теплоносителя позволяет передать с одним и тем же объемом воды гораздо большее количество тепла. Если температуру снизить, то придется увеличить расход теплоносителя, а следом существенно вырастут диаметры трубопроводов тепловых сетей.

Итак, работа элеваторного узла, установленного в тепловом пункте, состоит в снижении температуры воды путем подмешивания в подающий трубопровод остывший теплоноситель из обратки. Следует отметить, что данный элемент считается устаревшим, хотя до сих пор повсеместно используется. Сейчас при устройстве тепловых пунктов применяются смешивающие узлы с трехходовыми клапанами либо пластинчатые теплообменники.

Как функционирует элеватор?

Если говорить простыми словами, то элеватор в системе отопления – это водяной насос, не требующий подведения энергии извне. Благодаря этому, да еще простой конструкции и низкой стоимости, элемент нашел свое место практически во всех тепловых пунктах, что строились в советское время. Но для его надежной работы нужны определенные условия, о чем будет сказано ниже.

Чтобы понять устройство элеватора системы отопления, следует изучить схему, представленную выше на рисунке. Агрегат чем-то напоминает обычный тройник и устанавливается на подающем трубопроводе, своим боковым отводом он присоединяется к обратной магистрали. Только через простой тройник вода из сети проходила бы сразу в обратный трубопровод и прямо в систему отопления без снижения температуры, что недопустимо.

Стандартный элеватор состоит из подающей трубы (предкамеры) со встроенным соплом расчетного диаметра и смесительной камеры, куда подводится остывший теплоноситель из обратки. На выходе из узла патрубок расширяется, образуя диффузор. Агрегат действует следующим образом:

  • теплоноситель из сети с высокой температурой направляется в сопло;
  • при прохождении через отверстие малого диаметра скорость потока возрастает, из-за чего за соплом возникает зона разрежения;
  • разрежение вызывает подсасывание воды из обратного трубопровода;
  • потоки смешиваются в камере и выходят в систему отопления через диффузор.

Как происходит описанный процесс, наглядно показывает схема элеваторного узла, где все потоки обозначены разными цветами:

Непременное условие устойчивой работы узла заключается в том, чтобы величина перепада давления между подающей и обратной магистралью сети теплоснабжения было больше, чем гидравлическое сопротивление отопительной системы.

Наряду с явными преимуществами данный смесительный узел обладает одним существенным недостатком. Дело в том, что принцип работы элеватора отопления не позволяет регулировать температуру смеси на выходе. Ведь что для этого нужно? Изменять при необходимости количество перегретого теплоносителя из сети и подсасываемой воды из обратки. Например, чтобы температуру снизить, надо уменьшить расход на подаче и увеличить поступление теплоносителя через перемычку. Этого можно добиться только уменьшением диаметра сопла, что невозможно.

Проблему качественного регулирования помогают решить элеваторы с электроприводом. В них посредством механического привода, вращаемого электродвигателем, увеличивается или уменьшается диаметр сопла. Это реализовано за счет дроссельной иглы конусной формы, входящей в сопло изнутри на определенное расстояние. Ниже изображена схема элеватора отопления с возможностью управления температурой смеси:

1 – сопло; 2 – дроссельная игла; 3 – корпус исполнительного механизма с направляющими; 4 – вал с зубчатым приводом.

Примечание. Вал привода может снабжаться как рукояткой для управления вручную, так и электродвигателем, включаемым дистанционно.

Появившийся относительно недавно регулируемый элеватор отопления позволяет производить модернизацию тепловых пунктов без кардинальной замены оборудования. Учитывая, сколько еще подобных узлов функционирует на просторах СНГ, подобные агрегаты приобретают все большую актуальность.

Расчет элеватора отопления

Следует отметить, что расчет водоструйного насоса, коим является элеватор, считается довольно громоздким, мы постараемся подать его в доступной форме. Итак, для подбора агрегата нам важны две главных характеристики элеваторов – внутренний размер смесительной камеры и проходной диаметр сопла. Размер камеры определяется по формуле:

  • dr – искомый диаметр, см;
  • Gпр – приведенное количество смешанной воды, т/ч.

В свою очередь, приведенный расход вычисляется таким образом:

В этой формуле:

  • τсм – температура смеси, идущей на отопление, °С;
  • τ20 – температура остывшего теплоносителя в обратке, °С;
  • h2 – сопротивление отопительной системы, м. вод. ст.;
  • Q – потребный расход тепла, ккал/ч.

Чтобы подобрать элеваторный узел системы отопления по размеру сопла, надо его рассчитать по формуле:

  • dr – диаметр смесительной камеры, см;
  • Gпр – приведенный расход смешанной воды, т/ч;
  • u – безразмерный коэффициент инжекции (смешивания).

Первые 2 параметра уже известны, остается только отыскать значение коэффициента смешивания:

В этой формуле:

  • τ1 – температура перегретого теплоносителя на входе в элеватор;
  • τсм, τ20 – то же, что и в предыдущих формулах.

Примечание. Для расчета сопла надо взять коэффициент u, равный 1.15u’.

Опираясь на полученные результаты, осуществляется подбор агрегата по двум основным характеристикам. Стандартные размеры элеваторов обозначены номерами от 1 до 7, принимать надо тот, что ближе всего к расчетным параметрам.

Заключение

Поскольку реконструкции всех тепловых пунктов произойдут нескоро, элеваторы еще долго будут служить там в качестве смесителей. Поэтому знание их устройства и принципа действия будет полезным определенному кругу людей.

Элеваторный узел системы отопления используется для подключения дома к внешней тепловой сети (источнику теплоснабжения) при необходимости снижения температуры теплоносителя посредством подмешивания к нему воды из обратного трубопровода.

Функции и характеристики

При правильной установке элеваторный узел системы отопления выполняет циркуляционную и смесительную функции. Данное устройство имеет следующие преимущества:

  • Отсутствие подключения к электрической сети.
  • Эффективность работы.
  • Простота конструкции.

Недостатки:

  • Невозможность регулирования температуры на выходе.
  • Требуется точный расчет и подбор.
  • Между обратным и подающим трубопроводом необходимо соблюдать перепад давлений.

Элеваторный узел системы отопления: схема

Конструкцией данного устройства предусмотрено наличие следующих элементов:

  • Сопло.
  • Камера разряжения.
  • Струйный элеватор.

Дополнительно элеваторный узел системы отопления комплектуется манометрами, термометрами и запорной арматурой.

В качестве альтернативы данному устройству можно использовать оборудование с автоматическим регулированием температуры. Оно экономичнее, более энергосберегающее, но стоит значительно дороже. А главное, что это оборудование не способно работать при отсутствии электричества.

По этой причине установка элеватора на сегодняшний день является актуальной. Для него характерен ряд неоспоримых преимуществ, и он будет еще долгое время использоваться коммунальными предприятиями.

Роль элеваторного узла

Обогрев отечественных многоквартирных домов осуществляется за счет централизованной отопительной системы. Для этой цели в маленьких и больших городах возводятся небольшие ТЭЦ и котельные. Каждый из этих объектов вырабатывает тепло для нескольких домов или микрорайонов. Недостатком такой системы является существенная потеря тепла.

При слишком продолжительном пути теплоносителя невозможно регулировать температуру перемещаемой жидкости. По этой причине каждый дом должен быть оборудован элеваторным узлом. Это позволит решить многие проблемы: существенно уменьшит расход тепла, предотвратит аварии, которые могут возникнуть в результате обесточивания или выхода из строя оборудования.

Этот вопрос особенно актуальным становится в осенний и весенний периоды года. Теплоноситель нагревается в соответствии с установленными стандартами, однако его температура зависит от наружной температуры воздуха.

Таким образом, в ближайшие дома, по сравнению с теми, что расположены дальше, поступает более горячий теплоноситель. Именно по этой причине так необходим элеваторный узел системы центрального отопления. Он разбавит перегретый теплоноситель холодной водой и тем самым компенсирует потери тепла.

Принцип действия

Элеваторный узел системы отопления функционирует следующим образом:

  • Из магистральной сети теплоноситель направляется в суженное на выходе сопло, а затем благодаря перепаду давлений происходит его ускорение.
  • Перегретый теплоноситель из сопла выходит с повышенной скоростью и с пониженным давлением. Таким образом создается разряжение и подсасывание жидкости в элеватор из обратного трубопровода.
  • Регулирование количества перегретого и охлажденного обратного теплоносителя должно происходить таким образом, чтобы температура жидкости, выходящей из элеватора, соответствовала проектной величине.

Элеваторный узел системы отопления: размеры

Номер Расход теплоносителя Диаметр горловины Масса Размеры
L l1 l2 h Фланец 1 Фланец 2
0 0,1-0,4 т/час 10мм 6,4кг 256мм 85мм 81мм 140мм 25мм 32мм
1 0,5-1 т/час 15мм 8,1кг 425мм 110мм 90мм 110мм 40мм 50мм
2 1-2 т/час 20мм 8,1кг 425мм 100мм 90мм 110мм 40мм 50мм
3 1-3 т/час 25мм 12,5кг 625мм 145мм 135мм 155мм 50мм 80мм
4 3-5 т/час 30мм 12,5кг 625мм 135мм 135мм 155мм 50мм 80мм
5 5-10 т/час 35мм 13кг 625мм 125мм 135мм 155мм 50мм 80мм
6 10-15 т/час 47мм 18кг 720мм 175мм 180мм 175мм 80мм 100мм
7 15-25 т/час 59мм 18,5кг 720мм 155мм 180мм 175мм 80мм 100мм

Виды

Различают два вида этих устройств:

  • Элеваторы, не поддающиеся регулированию.
  • Элеваторы, регулирование работы которых осуществляется посредством электропривода.

В процессе установки любого из них очень важно соблюдать герметичность. Данное оборудование устанавливается в систему отопления, которая уже функционирует. Поэтому перед монтажом рекомендуется изучить место, где планируется последующее размещение этого оборудования. Данный вид работ рекомендуется доверить специалистам, которые способны разобраться в схеме, а также разработать чертежи и выполнить расчеты.

Уменьшение тепловых потерь является основной задачей при планировании централизованного отопления. Для этого, еще на этапе нагрева теплоносителя, создаются особые условия для его транспортировки: повышенное давление, максимальный температурный режим. Но для того чтобы при распределении горячей воды уровень ее нагрева понизился до требуемого устанавливают элеваторный узел отопления: схемы, принципы работы и проверки должны строго соответствовать нормам. Несмотря на то что он является частью центрального отопления, обычный пользователь должен знать принцип его работы.

Назначение элеваторного узла

Еще на первых этапах проектирования центрального отопления инженеры столкнулись с проблемой сохранения тепловой энергии из-за протяженности теплотрасс. Для уменьшения тепловых потерь применяются два основных метода:

  • Максимальная теплоизоляция поверхности трубы;
  • Установка в зданиях элеваторных узлов.

Рабочий температурный режим в наружных трубах отопления составляет 150 или 130 град. Подавать воду потребителям такую температуру запрещено. Именно поэтому был разработан регулируемый элеваторный узел отопления. Он предназначен для смешивания горячего и холодного потоков теплоносителя с целью оптимизации его температуры. Помимо этого также уменьшается давление до приемлемого уровня.

Для нормальной работы автоматический элеваторный узел отопления устанавливают в заранее подготовленном помещении. Для жилых многоквартирных домов таковым является подвал. Монтаж и дальнейшее обслуживание должны выполнять только специалисты. Любое нарушение режима работы может привести к возникновению аварийных ситуаций. Монтаж в частных домах подобного элемента отопления нецелесообразно. Это связано с тем, что котлы не смогут обеспечить должный температурный режим работы. Поэтому он применяется только для создания разветвленных отопительных систем с большой протяженностью наружных теплопроводов.

Беря за основу принцип работы этого элеваторного узла отопления, можно сделать аналогичную систему и для автономной системы. Но для этого применяют двух или трехходовые клапаны с термостатами.

Схема работы элеваторного узла

На первый взгляд, принцип работы элеваторного узла системы отопления должен представлять собой довольно сложную систему. Однако на практике была разработана удачная конструкция, которая по своим техническим характеристикам схожа с трехходовым смесительным клапаном.

Конструктивно он состоит из следующих элементов:

  • Входной патрубок . Через него поступает теплоноситель с высокой температурой под максимальным давлением;
  • Обратный патрубок . Необходим для подключения остывшей воды для дальнейшего смешивания с потоком горячей;
  • Сопло . Ключевой элемент схемы элеваторных узлов системы отопления. Горячая вода поступает в него под давлением и создает разряжение в приемной камере. В результате этого остывший теплоноситель смешивается с нагретым;
  • Выходной патрубок . Подключается к распределительной системе трубопроводов для дальнейшей транспортировки жидкости к потребителям.

Помимо него элеваторный узел системы центрального отопления должен включать в себя дополнительные элементы. К ним относятся грязевики, запорная арматура и датчики. Последние обязательны для установки, так как с их помощью выполняется контроль параметров всей системы.

Разобравшись, что такое элеваторный узел отопления, нужно подробнее узнать о его видах и способах регулировки режимов работы.

После проверки работы элеваторного узла и всей системы отопления нужно обязательно потребовать обновленный паспорт на устройство. В нем указываются изначальные характеристики и фактические после контрольных поверок.

Виды элеваторных узлов отопления

Эта схема отопления элеваторного узла не раскрывает механизм регулировки температурного режима. А это является основным из способов оптимизации расхода тепловой энергии в зависимости от внешних факторов – температуры на улице, степени теплоизоляции дома и так далее. Для этого в сопло устанавливается специальный стержень конусной формы. Зубчатые передачи обеспечивают его соединение с задвижкой. Регулируя положение стержня, изменяется пропускная способность сопла.

В зависимости от установленного оборудования различают два вида регулируемых элеваторных узлов отопления:

  • Ручной способ . Вращение задвижки выполняется традиционным методом. При этом ответственный работник должен следить за показаниями манометров и термометров системы;
  • Автоматический . На штифт задвижки устанавливается сервопривод, который соединяется с датчиками температуры и давления. В зависимости от установленных показателей выполняются движения стержня.

Типичный чертеж элеваторного узла должен включать в себя не только требуемые элементы, эксплуатационные характеристики системы. А для этого нужно сделать расчет параметров. Подобная работа выполняется только специализированными проектными организациями, так как требует учета всех факторов.

Установка регулируемого элеваторного узла для отопления в сочетании со счетчиком расхода тепловой энергии позволят сэкономить до 30% расхода горячего теплоносителя.

Особенности монтажа и проверка

Стоит сразу отметить, что установка и проверка работы элеваторного узла и системы отопления – это прерогатива представителей обслуживающей компании. Делать это жильцам дома категорически запрещено. Однако знания схемы элеваторных узлов центральной системы отопления рекомендуется.

При проектировании и монтаже учитываются характеристики входящего теплоносителя. Также принимаются во внимание разветвленность сети в доме, количество приборов отопления и температурный режим работы. Любой автоматический элеваторный узел для отопления состоит из двух частей.

  • Регулировка интенсивности потока входящий горячей воды, а также замеры ее технических показателей – температуры и напора;
  • Непосредственно сам смесительный узел.

Основной характеристикой является коэффициент смешивания. Это отношение объемов горячей и холодной воды. Данный параметр является результатом точных расчетов. Он не может быть константой, так как зависит от внешних факторов. Установка должна выполняться строго по схеме элеваторного узла системы отопления. После этого делается точная настройка. Для уменьшения погрешности рекомендуется максимальная нагрузка. Таким образом температура воды в обратной трубе будет минимальной. Это является необходимым условием для точного регулирования работы автоматической задвижки.

Через определенный промежуток времени необходимы плановые проверки работы элеваторного узла и системы отопления в целом. Точный порядок действий зависит от конкретной схемы. Однако можно составить общий план, в который входят следующие обязательные процедуры:

  • Проверка целостности труб, запорной арматуры и приборов, а также соответствие их параметров паспортных данным;
  • Юстировка датчиков температуры и давления;
  • Определение потерь давления во время прохождения теплоносителя через сопло;
  • Вычисление коэффициента смещения. Даже для самой точной схемы отопления элеваторного узла со временем происходит износ оборудования и трубопроводов. Эта поправка обязательно учитывается при настройке.

После выполнения этих работ автоматический элеваторный узел центрального отопления должен опечатываться, чтобы предотвратить постороннее вмешательство.

Нельзя применять самодельные схемы элеваторных узлов для центральных систем отопления. В них зачастую не учитываются важнейшие характеристики, что может не только снизить эффективность работы, но и стать причиной аварийной ситуации.

Требования к помещению

В подавляющем большинстве случаев смесительные узлы монтируются в подвале здания. Для выполнения своих функций необходимо учитывать характеристику помещения – сезонные перепады температуры и влажности.

Существует ряд требований к этим показателям, выполнение которых обязательно. В особенности это касается элеваторных узлов системы центрального отопления с установленными автоматическими сервоприводами:

  • Температура в помещении не должна опускаться ниже 0°С;
  • Для предотвращения появления конденсата на поверхности труб обустраивается система вытяжной вентиляции;
  • Для электрических приборов обязательно монтируется отдельная щитовая. Рекомендуется предусмотреть источник автономного питания на случай аварийного отключения подачи электричества.

Однако по факту редко можно встретить следование этим правилам. В итоге даже для самого эффективного чертежа элеваторного узла его практическое исполнение может существенно отличаться. Именно поэтому появились альтернативные схемы для смешивания потоков теплоносителя.

В некоторых новых многоквартирных домах, подключаемых к центральному отоплению, не предусмотрена схема отопления с элеваторным узлом. Для его монтажа нужно обратиться в управляющую компанию.

Другие варианты тепловых узлов

Отталкиваясь от основного принципа работы элеваторного узла системы отопления, были разработаны альтернативные способы поддержания нужного уровня температуры в трубах для пользователей. Их отличие от традиционной схемы заключается в наличии сложной электронной системы управления.

Первое, на что обратили внимание разработчики этого узла – оптимальный расход горячей воды. Поэтому на входном патрубке обязательно устанавливается счетчик тепловой энергии. Он дает возможность не только увидеть объем поступившего в систему дома теплоносителя, но и может автоматически подсчитывать его стоимость и передавать данные в управляющую компанию.

Установленные насосы позволяют контролировать скорость прохождения теплоносителя по трубам. Это необходимо для уменьшения погрешности при смешивании потоков жидкости в сопле. Для этого на входную и обратную трубы монтируют температурные датчики. Если уровень нагрева воды меньше заданного – насос на обратной прекращает свою работу. Для увеличения объема горячего теплоносителя активируется соответствующее насосное оборудование.

Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в .

Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.

Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.

Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?

Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в . Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.

Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.

В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.

В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.

В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м.вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.

В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал . Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.

Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.

После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка, верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.

Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).

Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.

Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.

Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.

Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.

Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.

Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.

На тему устройства и настройки тепловых пунктов я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:

1. Введение
2. Устройство ИТП, схема без элеватора
3. Устройство ИТП, элеваторная схема
4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
5. Заключение

Устройство ИТП (тепловых пунктов) зданий

Похожие статьи