Устойчив к воздействию ультрафиолетовых лучей. Устойчивость к УФ-лучам природных изолятов Dematiaceae. Акриловые герметики с УФ-фильтром

04.03.2020

Основные характеристики:

  • Эстетические/визуальные характеристики;
  • Цвет;
  • Блеск;
  • Поверхность гладкая, текстурированная, зернистая…;
  • Рабочие характеристики;
  • Формуемость и общие механические свойства;
  • Коррозийная стойкость;
  • Устойчивость к УФ-излучению.

Все эти характеристики проверяются либо в процессе изготовления, либо после него, и могут быть проверены различными тестами и измерениями.

Характеристики продуктов основаны на этих тестах.

1. Механические свойства краски

Необходимые характеристики:

Формовочные методы:

  • Гибка;
  • Профилирование;
  • Глубокая вытяжка.

Контакт инструмент с органическим покрытием:

  • Износостойкость;
  • Смазочные свойства краски.

Температура обработки минимум 16°С

2. Механические свойства: Гибкость

Т-образный изгиб

Плоский образец окрашенного материала сгибается параллельно направлению прокатки. Действие повторяется для получения все менее жёсткого радиуса изгиба.

Определяется адгезия и гибкость системы покрытия в режиме деформации при изгибе (или режиме растяжения) при комнатной температуре (23°С ±2°С).

Результаты выражаются, например (0.5 WPO и 1,5T WC).

Ударное испытание

Плоский образец окрашенного материала деформируется путем удара 20 мм-го полусферического пробойника весом 2 кг. Высота падения определяет энергию удара. Проверяются адгезия покрытия и гибкость.

Оценивается способность окрашенного материала противостоять быстрой деформации и ударам (сопротивление отслоению покрытия и растрескиванию).

3. Механические свойства: Твердость

Твердость по карандашу

Карандаши различной твердости (6В – 6Н) перемещаются по поверхности покрытия при постоянной нагрузке.

Оценивается твердость поверхности по «карандашу».

Твердость по Клемену (Тест на царапание)

Индентор диаметром 1мм перемещается по поверхности с постоянной скоростью. Сверху могут накладываться различные нагрузки (от 200 г до 6 кг).

Определяются различные свойства: твердость поверхности покрытия при царапании, фрикционные свойства, адгезия с подложкой.

Результаты зависят от толщины окрашенного прдукта.

Твердость по Тейберу (тест на износостойкост)

Плоский образец окрашенного материала поворачивается под двумя абразивными кругами, установленными параллельно. Истирание достигается круговым движением испытательной панели и постоянной нагрузкой.

Твердость по Тейберу – это стойкость к истиранию при грубом контакте.

Измерение напряжения на металлочерепице показывает, что деформации в некоторых зонах могут быть очень сильными.

Растяжение на продольном направлеии может достигать 40%.

Усадка на поперечном направлении может достигать 35%.

5. Механические свойства: пример дефформации при производстве металлочерепицы.

Тест Марсиньяка:

1-й шаг: деформация в устройстве Марсиньяка;

2-й шаг состаривание в климатической камере (тропический тест).

Для воспроизведения в малых масштабах наиболее сильных деформаций, наблюдаемых на промышленной кровельной черепице.

Для моделирования старения краски после профилирования и оценки эффективности систем окраски.

6. Коррозионная стойкость.

Коррозионная стойкость окрашенных продуктов зависит от:

Окружающей среды (температура, влажность, осадки, агрессивные вещества, например хлориды…);

Природы и толщины органического покрытия;

Природы и толщины металлической основы;

Обработки поверхности.

Коррозионную стойкость можно измерять:

Ускоренными испытаниями:

Различные ускоренные испытания могут проводиться в различных «простых» (искусственно созданных) агрессивных условиях.

Природным воздействием:

Возможны воздействия различных сред: морской климат, тропический, континентальный, промышленные условия…

7. Коррозионная стойкость: ускоренные испытания

Солевой тест

Окрашенный образец подвергается воздействию сплошного солевого тумана (непрерывное распыление раствора хлорида натрия на 50г/л при 35°С);

Продолжительность теста меняется от 150 до 1000 часов в зависимости от спецификации продукта;

Способность ингибиторов (замедлителей) коррозии блокировать анодные и катодные реакции по краям и рискам;

Влажная адгезия грунта;

Качество обработки поверхности через ее чувствительность к увеличению уровня рН.

8. Коррозионная стойкость: ускоренные испытания

Устойчивость к конденсатам, QST тест

Плоский окрашенный образец выставляется в условиях конденсата (с одной стороны панель подвергается воздействию влажной атмосферы при 40°С, другая сторона держится в комнатных условиях).

Влагостойкость, KTW тест

Плоский окрашенный образец подвергается циклическим воздействиям (40°С > 25°С) в насыщенной водной атмосфере;

После тестирования определяется появление пузырей на металле тестируемого образца;

Влажная адгезия грунта и слоя обработки поверхности;

Барьерный эффект покрытия внешнего слоя и его пористость.

Тест на коррозию внутренних витков рулона

Плоский окрашенный образец помещается под нагрузкой 2 кг в пачке с другими образцами и подвергается циклическому воздействию (25°С, 50%RH> 50°C или 70°С, 95%RH);

Экстремальные условия, приводящие к коррозии между витками рулона во время транспортировки или хранения (влажная адгезия грунта, барьерный эффект покрытия верхнего слоя и пористость в закрытых условиях пачки).


90° на Север

5° на Юг

10. Коррозионная стойкость: Открытое воздействие (Стандарты долговечности: EN 10169)

В соответствии с EN 10169 продукты для открытых сооружений должны подвергаться воздействию окружающей среды в течении минимум 2 лет.

Характеристики, необходимые для RC5: 2 мм и 2S2, в основном под навесом (образец 90°С) и в зонах перекрытия внахлест (образец 5°).

11. Устойчивость к УФ воздействию (выгоранию)

После коррозии УФ воздействие является второй главной угрозой долговечности окрашенных материалов.

Термин «УФ выгорание» означает изменение внешнего вида краски (в основном цвета и блеска) со временем.

Не только воздействие УФ излучения ухудшает качество краски, но и другие воздействия окружающей среды:

Солнечный свет – УФ, видимый и инфро-красый диапазоны;

Влажность – время намокания поверхности, относительная влажность;

Температура – стойкость к растрескиванию – максимальные значеия и ежедневные циклы нагрева/охлаждеия;

Ветер, дождь – истирание песком;

Соль – промышленные, прибрежные зоны;

Грязь – воздействие грунта и загрязняющие вещества…

12. УФ выгорание

Ускоренный тест устойчивость к УФ

Как проводится тест?

Стандарты: EN 10169;

Плоский образец ОС подвергается воздеййствию УФ излучению;

УФ облучение;

Возможные периоды кондесации;

2000 часов воздействия (Циклы 4Н конденсации 40°С/4Н облучение при 60°С с излучением 0,89В/м2 при 340 нм);

После тестирования определяются изменения цвета и блеска.

13. Устойчивость к УФ

- EN 10169: Ускоренные испытания

- EN 10169: Воздействие окружающей среды:

Только боковое воздействие на образец в течении 2 лет в местах с фиксированной энергией солнечного излучения (не менее 4500 МДж/м2/год) > Гваделупа, Флорида, Санари и т.д…


В последнее время в обществе (в том числе, в научном сообществе) стала доминировать мысль об универсальности пластиков и композитов, от которых ожидают решения большинства проблем традиционных материалов. Считается, что новые виды пластиков и композитов вскоре заменят не только металлы, но и стекло, термостойкие неорганические вяжущие, стройматериалы. Довольно распространенным является взгляд, что путем химического или физико-химического модифицирования пластмасс (например, их наполнения) можно добиться впечатляющих результатов.

Во многом это верно. Однако у полимеров есть несколько «ахиллесовых пят», исправить которые не позволяют химия и физика углерода и его соединений. Одна из таких проблем – термостойкость и химстойкость под воздействием солнца и других излучений. Решают данную проблему УФ-стабилизаторы (УФС).

В присутствии вездесущего кислорода лучи солнца обладают мощным разлагающим полимеры действием. Оно хорошо видно по лежащим на открытом воздухе под солнцем пластиковым изделиям – сперва тускнеющим и белеющим, затем трескающимся и рассыпающимся. Не лучше они ведут себя и в море: по данным экологов, морская вода и солнце превращают пластиковые изделия в пыль, которую затем рыбы путают с планктоном и едят (а мы потом едим такую рыбу). В общем, без УФС и антирадиационных добавок (АРД) полимер не годится для многих нам привычных сфер применения.

Полимеры чувствительны к воздействию УФ-излучения, поэтому срок службы изделий сокращается под воздействием атмосферных факторов вследствие светодеструкции полимера. Применение концентрата светостабилизатора позволяет получить изделия с высокой стойкостью к УФ-излучению и значительно увеличить срок их эксплуатации. Кроме того, применение УФС предотвращает потерю цвета, помутнение, потерю механических свойств и образование трещин в готовой продукции.

Светостабилизаторы особенно важны в изделиях большой площади, подвергаемых солнечному или другому облучению, – пленок, листов. Понятие «УФ-стабилизация» означает, что пленка на протяжении определенного срока теряет под действием солнечных лучей не больше половины своей изначальной механической прочности. УФС, как правило, содержит 20% «пространственно затрудненных» аминов НАLS (т.е. аминов с пространственным строением, затрудняющим конформационные движения молекул – это позволяет стабилизировать радикалы и др.) и антиокислитель.

Характеристики УФ-стабилизаторов

Механизм действия светостабилизаторов (кроме УФС есть ИК-стабилизаторы и др.) сложен. Они могут просто вбирать в себя (абсорбировать) свет, выделяя поглощенную энергию затем в виде тепла; могут вступать в химреакции с продуктами первичного разложения; могут замедлять (ингибировать) нежелательные процессы. Различают два способа введения УФС: поверхностное покрытие и введение в блок полимера. Считается, что в блок вводить дороже, зато действие УФС долговечнее и надежнее. Правда, основная масса изделий (например, все китайские) стабилизируется нанесением полимерного поверхностного слоя – как правило, 40-50 мкм. Кстати, для долгого срока службы (3–5 лет или до 6–10 сезонов) недостаточно добавить много УФС, нужны еще достаточная толщина и запас прочности. Так, для срока службы 3 года пленка должна быть толщиной не менее 120 мк, для 6–10 сезонов необходим трехслойный материал толщиной до 150 мк, с упрочненным средним слоем.

УФС можно подразделить на абсорберы и стабилизаторы. Абсорберы вбирают излучение и преобразуют его в тепло (и их эффективность зависит от толщины слоя полимера, они малоэффективны в очень тонких пленках). Стабилизаторы стабилизируют уже появившиеся радикалы.

В СНГ продаются формы полимеров как стабилизированные (дороже) так и нестабилизированные (дешевле). Во многом это объясняет более низкое качество дешевых изделий-аналогов из Китая или других стран. Понятно, что полимеры (пленки) с удешевленной стабилизацией будут служить меньше установленного срока. Например, часто декларируется стабильность в течение 10 сезонов, но не указывается степень снижения стабильности при усиленных нагрузках. В итоге срок службы нередко составляет половину заявленного (т.е. 1–2 года).

Хорошим примером эффекта стабилизации полимера можно считать поликарбонат, полиэтилен и пленки. Срок действия поликарбоната в виде сотового листа колеблется от 2 до 20 лет, в зависимости от степени стабилизации. Из-за экономии на стабилизаторах, 90% производителей не могут подтвердить заявленный срок действия ПК-листов (обычно – 10 лет). То же с пленками. Например, агропленки вместо 5–10 сезонов выдерживают лишь 2–3, что приводит к существенным потерям в агросекторе. Полиэтилен без УФС не работает долго, поскольку быстро разлагается УФ-излучением (обратите внимание на вид и состояние ПЭ-изделий 10–15-летней давности). Из-за этого, например, полиэтиленовые газовые или водные трубы запрещают прокладывать по поверхности земли и даже внутри помещения. Без УФС и АРД не рекомендуется перерабатывать такие крупнотоннажные полимеры, как полипропилен, полиформальдегид, каучуки.

Качественные УФС, к сожалению, стоят дорого (большинство из них продуцируется брендовыми западными фирмами), и из-за этого многие местные производители на них экономят (их надо добавлять в количестве 0,1–2, а то и 5%). Вместо новых ГОСТов в производстве используются ТУ, и ГОСТы 20-летней давности. Для сравнения, в ЕС обновление стандартов по стабилизаторам проходит раз в 10 лет. Каждый из видов УФС имеет особенности, которые следует учитывать при использовании. К примеру, аминные УФС приводят к потемнению материала, и для светлых изделий их использовать не рекомендуется. Для них используются фенольные УФС.

Заметим, что присутствие УФС в полимерах, особенно пленках, пока не является само собой разумеющимся, о чем надо помнить потребителям. Солидные производители акцентируют внимание на присутствии УФС в какой-либо продукции. Так, Mitsubishi-Engineering Plastics заявляют о том, что гранулы их поликарбоната NOVAREX содержат УФ-стабилизирующую добавку, «чтобы сотовый поликарбонат мог использоваться в течение 10 лет под усиленным воздействием солнечных лучей». Пример «поближе» – последний апрельский релиз белорусского предприятия «Светлогорск-Химволокно» относительно внедрения новой продукции – ПЭ-пленки с УФС. Помимо объяснений, зачем нужны УФС, пресс-служба предприятия отмечает: пленка с УФС «может иметь срок службы до трех сезонов». Информация от одного из старейших и уважаемых в отрасли предприятий (основано в 1964 году, выпускает химволокна, полиэфирные текстильных нитей, быттовары) показывает: за наличием УФС в полимере потребитель должен следить сам.

Пару слов о рынке

Глобальный рынок свето- и термостабилизаторов приближается к отметке в 5 миллиардов долларов – точнее, к 2018 году ожидается достижение планки в 4,8 миллиардов. Крупнейшим потребителем стабилизаторов является строительная отрасль (в 2010 году 85% стабилизаторов использовалось для производства профилей, труб и кабельной изоляции). С учетом растущей моды на сайдинг (устойчивость которого к светооблучению является важнейшим условием), доля УФС в строительстве может лишь возрастать. Неудивительно, что на рынке светостабилизаторов и сейчас отмечается высокий спрос – крупнейшим потребителем стабилизаторов оказался Азиатско-Тихоокеанский регион, на который приходится до половины глобального спроса. Далее следуют Западная Европа и США. Затем идут рынки в Южной Америке, СНГ и Восточной Европе, на Среднем Востоке – там рост спроса на УФС опережает средние значения, достигая 3,5–4,7% в год.

Мировой рынок еще с 70-х годов стал пополняться предложениями от ведущих еврокомпаний. Так, почти полвека успешно используется УФС марки Tinuvin, для расширения производства которых в 2001 году компанией Ciba был построен новый завод (в 2009 году Ciba вошла в состав BASF). Компания IPG (International Plastic Guide) испытала и вывела на рынок концентрат УФС марки LightformPP для пленок и спанбондов (это нетканый полипропиленовый микропористый паропроницаемый изоляционный материал). Новые УФС, помимо светозащиты, уберегают от разрушающего действия пестицидов (в том числе, сернистых), что особенно важно в агропроме. Новые УФС уже начали поставляться в СНГ (как правило, поставки идут из Западной Европы, США и Южной Кореи). Разработки УФС проводят японская Novarex, западные Clariant, Ampacet, Chemtura, BASF. В последнее время все большее влияние приобретают азиатские продуценты – не только южнокорейские, но и китайские.

Дмитрий Северин

Акрил в архитектуре

Из акрилового стекла создаются красивейшие архитектурные сооружения - прозрачная кровля, фасады, дорожные ограждения , навесы, козырьки, беседки. Все эти конструкции эксплуатируются на открытом воздухе под постоянным воздействием солнечного излучения. Возникает резонный вопрос: смогут ли акриловые сооружения выдержать «натиск» лучей палящего солнца, сохранив при этом отличные эксплуатационные характеристики, блеск, прозрачность? Спешим вас порадовать: поводов для беспокойства нет. Акриловые конструкции могут безопасно эксплуатироваться на улице под постоянным воздействием ультрафиолетового излучения даже в жарких странах.

Сравнение акрила с другими пластиками по устойчивости к УФ-излучению

Попробуем сравнить акрил с другими пластиками. Сегодня для изготовления фасадного, кровельного остекления и оградительных конструкций используется большое количество различных прозрачных пластиков. На первый взгляд, они ничем не отличаются от акрила. Но синтетические материалы, похожие на акрил по своим визуальным характеристикам, теряют свою внешнюю привлекательность уже через несколько лет эксплуатации под прямыми солнечными лучами. Никакие дополнительные покрытия и пленки не способны защитить некачественный пластик от ультрафиолета на долгий срок. Материал остается чувствительным к УФ-лучам, а о надежности всевозможных поверхностных покрытий говорить, увы, не приходится. Защита в виде пленок и лаков со временем трескается, отслаивается. Не удивительно, что гарантия от пожелтения таких материалов не превышает нескольких лет. Акриловое стекло марки Plexiglas проявляет себя совершенно иначе. Материал обладает естественными защитными свойствами, поэтому не теряет своих отличных характеристик на протяжении, как минимум, трех десятков лет.

Как работает технология защиты акрила от солнечных лучей?

Устойчивость Plexiglas к УФ-излучению обеспечивается уникальной технологией комплексной защиты Naturally UV Stable. Защита формируется не только на поверхности, но и по всей структуре материала на молекулярном уровне. Производитель оргстекла Plexiglas предоставляет 30-летнюю гарантию на отсутствие пожелтения и помутнения поверхности при постоянной эксплуатации на улице. Такая гарантия распространяется на прозрачные бесцветные листы, трубы, блоки, стержни, гофрированные и ребристые плиты из акрилового стекла марки Plexiglas. Навесы, кровельные покрытия, прозрачные акриловые фасады, беседки, ограждения и другие изделия из оргстекла не приобретают неприятного желтого оттенка.

На схеме показаны изменения индекса светопропускания акрила в течение гарантийного срока эксплуатации в различных климатических зонах. Мы видим, что светопропускание материала незначительно снижается, но это минимальные, незаметные невооруженным глазом изменения. Снижение индекса светопропускания на несколько процентов можно определить лишь с помощью специального оборудования. Визуально акрил остается первозданно прозрачным и блестящим.

На графике можно проследить динамику изменения светопроницаемости акрила в сравнении с обычным стеклом и другими пластиками. Во-первых, светопроницаемость акрила в исходном состоянии выше. Это самый прозрачный материал из известных на сегодняшний день пластиков. Со временем разница становится более заметной: некачественные материалы начинают темнеть, тускнеть, а светопроницаемость акрила остается на прежнем уровне. Ни один из известных пластиков, кроме акрила, не может пропускать 90% света через тридцать лет эксплуатации под солнцем. Именно поэтому акрилу отдают предпочтение современные дизайнеры и архитекторы при создании своих лучших проектов.


Упоминая о светопропускании, мы говорим о безопасном спектре ультрафиолетовых лучей. Опасную часть спектра солнечного излучения акриловое стекло задерживает. Например, в доме под акриловой крышей или в самолете с акриловыми иллюминаторами люди находятся под надежной зашитой остекления. Для пояснения разберемся в природе ультрафиолетового излучения. Спектр делится на коротковолновое, средневолновое и длинноволновое излучение. Каждый тип излучения оказывает различное воздействие на окружающий мир. Наиболее высокоэнергетическое излучение с короткой длиной волны, поглощаемое озоновым слоем планеты, способно повредить молекулы ДНК. Средневолновое - при длительном воздействии вызывает ожоги кожи и угнетает основные функции организма. Самое безопасное и даже полезное - длинноволновое излучение. До нашей планеты добирается лишь часть опасного средневолнового излучения и весь длинноволновой спектр. Акрил пропускает полезный спектр УФ-излучения, задерживая опасные лучи. В этом заключается очень важное преимущество материала. Остекление дома позволяет сохранить максимум света в помещении, оберегая людей от негативного воздействия ультрафиолета.

Полимеры – это активные химические вещества, которые в последнее время приобретают широкую популярность из-за массового потребления пластмассовых изделий. С каждым годом растут объемы мирового производства полимеров, а изготовленные с их использованием материалы завоевывают новые позиции в бытовой и производственной сферах.

Все испытания продукции проводятся в лабораторных условиях. Их основная задача – определить факторы окружающей среды, которые оказывают разрушительное воздействие на пластмассовые изделия.

Основная группа неблагоприятных факторов, разрушающих полимеры

Стойкость конкретных изделий к негативным климатическим условиям определяется с учетом двух главных критериев:

  • химического состава полимера;
  • типа и силы воздействия внешних факторов.

При этом неблагоприятное влияние на полимерные изделия определяется по времени их полного разрушения и типу воздействия: моментальная полная деструкция или малозаметные трещины и дефекты.

К факторам, влияющим на разрушение полимеров, относятся:

  • микроорганизмы;
  • тепловая энергия различной степени интенсивности;
  • промышленные выбросы, в составе которых присутствуют вредные вещества;
  • повышенная влажность;
  • УФ-излучение;
  • рентгеновское излучение;
  • повышенный процент содержания в воздухе соединений кислорода и озона.

Процесс полного разрушения изделий ускоряется при одновременном воздействии нескольких неблагоприятных факторов.

Одной из особенностей проведения климатических испытаний полимеров является необходимость тестовой экспертизы и изучения влияния каждого из перечисленных явлений по отдельности. Однако такие оценочные результаты не могут с полной достоверностью отразить картину взаимодействия внешних факторов с полимерными изделиями. Это связано с тем, что в обычных условиях материалы чаще всего подвергаются комбинированному воздействию. При этом разрушительный эффект заметно усиливается.

Воздействие ультрафиолетовой радиации на полимеры

Существует ошибочное мнение, что пластмассовым изделиям особый вред наносят солнечные лучи. На самом деле, разрушительное влияние оказывает только ультрафиолет.

Связи между атомами в полимерах могут быть уничтожены только под воздействием лучей этого спектра. Последствия такого неблагоприятного воздействия можно наблюдать визуально. Они могут выражаться :

  • в ухудшении механических свойств и прочности пластмассового изделия;
  • повышении хрупкости;
  • выгорании.

В лабораториях для подобных испытаний применяют ксеноновые лампы.

Также проводят эксперименты по воссозданию условий воздействия УФ-радиации, повышенной влажности и температуры.

Такие испытания нужны для того, чтобы сделать выводы о необходимости внесения изменений в химический состав веществ. Так, для того чтобы полимерный материал приобрел устойчивость к УФ-излучению, в него добавляют специальные адсорберы. За счет поглощающей способности вещества активизируется защитный слой.

Устойчивость и прочность межатомных связей также можно повысить путем введения стабилизаторов.

Разрушающее действие микроорганизмов

Полимеры относятся к веществам, которые весьма устойчивы к воздействию бактерий. Однако это свойство характерно только для изделий, изготовленных из пластмассы высокого качества.

В низкокачественные материалы добавляются низкомолекулярные вещества, которые имеют тенденцию скапливаться на поверхности. Большое число таких компонентов способствует распространению микроорганизмов.

Последствия разрушительного воздействия можно заметить довольно быстро, так как:

  • утрачиваются асептические качества;
  • снижается степень прозрачности изделия;
  • появляется хрупкость.

В числе дополнительных факторов, которые могут повлечь за собой снижение эксплуатационных характеристик полимеров, следует отметить повышенную температуру и влажность. Они создают условия, благоприятные для активного развития микроорганизмов.

Проводимые исследования позволили найти наиболее эффективный способ предотвращения размножения бактерий. Это добавление в состав полимеров специальных веществ – фунгицидов. Развитие бактерий приостанавливается за счет высокой токсичности компонента для простейших микроорганизмов.

Можно ли нейтрализовать воздействие негативных природных факторов?

В результате проводимых исследований удалось установить, что большая часть пластмассовой продукции, представленной на современном рынке, не вступает во взаимодействие с кислородом и его активными соединениями.

Однако механизм разрушения полимеров может быть запущен при комплексном воздействии кислорода и высокой температуры, влажности или ультрафиолетовой радиации.

Также при проведении специальных исследований удалось изучить особенности взаимодействия полимерных материалов с водой. Жидкость влияет на полимеры тремя способами:

  1. физическим;
  2. химическим (гидролиз);
  3. фотохимическим.

Дополнительное одновременное воздействие повышенной температуры может ускорить процесс разрушения полимерных изделий.

Коррозия пластмасс

В широком смысле это понятие подразумевает разрушение материала под негативным воздействием внешних факторов. Так, под термином «коррозия полимеров» следует понимать изменение состава или свойств вещества, вызванное неблагоприятным влиянием, которое приводит к частичному или полному разрушению изделия.

Процессы целенаправленного преобразования полимеров для получения новых свойств материалов к этому определению не относятся.

О коррозии следует говорить, например, когда поливинилхлорид соприкасается и взаимодействует с химически агрессивной средой – хлором.

Устойчивость эмалей к выцветанию

Условную светостойкость определяли на образцах эмали темно-серого цвета RAL 7016 на ПВХ–профиле REHAU BLITZ.

Условную светостойкость лакокрасочного покрытия определяли в испытаниях в соответствии со стандартами:

ГОСТ 30973-2002 "Профили поливинилхлоридные для оконных и дверных блоков. Метод определения сопротивления климатическим воздействиям и оценки долговечности" . п. 7.2, таб.1, прим. 3.

Определение условной светостойкости при интенсивности излучения 80±5 Вт/м 2 контролировали по изменению блеска покрытий и цветовых характеристик. Цветовые характеристики покрытий определяли на приборе «Спектротон» после протирки образцов сухой ветошью для удаления образовавшегося налета.

Об изменении цвета образцов в процессе испытания судили по изменению цветовых координат в системе CIE Lab, рассчитывая ΔE. Результаты приведены в таблице 1.

Таблица 1 – Изменение блеска и цветовых характеристик покрытий

Время выдержки, ч

Потеря блеска, %

Координата цвета - L

Координата цвета - a

Координата цвета -b

Изменение цвета Δ E к эталону

До испытаний

После испытаний

Считаются прошедшими испытания образцы с 1 по 4.

Данные приводятся для образца №4 - 144 часа УФ облучения, что соответствует по ГОСТ 30973-2002 (40 условных лет):

L = 4,25 норма 5,5; a = 0,48 норма 0,80; b = 1,54 норма 3,5.

Заключение:

Мощность светового потока до 80±5 Вт/м 2 приводит к резкому падению блеска покрытий на 98 % через 36 ч испытаний в результате образования налета. При продолжении испытаний дальнейшая потеря блеска не происходит. Светостойкость можно охарактеризовать в соответствии с ГОСТ 30973-2002 - 40 условных лет.

Цветовые характеристики покрытия лежат в допустимых пределах и соответствуют ГОСТ 30973-2002 на образцах №1, №2, №3, №4.

Похожие статьи