Уникальные свойства кристаллов. Большая энциклопедия нефти и газа

12.10.2019

Лицей современных технологий управления

Реферат по физике

Кристаллы и их свойства

Выполнил:

Проверил:

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101° 55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Укладка третьего слоя шаров может быть осуществлена двумя способами (рис.1). В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров.

Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.

Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.

В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.

На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.

Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.

За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке. При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.

Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке-шесть половинок на гра­нях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общие свойства кристаллов

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

1. Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1 Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2 Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали

Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3 Выявление анизотропии теплопроводности на кварце (а) и ее отсутствия на стекле (б)

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

2. Однородность

Однородность - выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело. Однородным считается тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом. Другими словами, находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Ведутся разработки, которые могут повысить коэффициент однородности кристаллов.

Это изобретение запатентовано нашими русскими учеными. Изобретение относится к сахарной промышленности, в частности к получению утфелей. Изобретение обеспечивает повышение коэффициента однородности кристаллов в утфеле, а также способствует увеличениею скорости роста кристаллов на завершающем этапе наращивания за счет постепенного роста коэффициента пересыщения.

Недостатками известного способа являются низкий коэффициент однородности кристаллов в утфеле первой кристаллизации, значительная длительность получения утфеля.

Технический результат изобретения заключается в повышении коэффициента однородности кристаллов в утфеле первой кристаллизации и интенсификации процесса получения утфеля.

3. Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

К механическим свойствам кристаллов относятся свойства, связанные с такими механическими воздействиями на них, как удар, сжатие, растяжение и прочее - (спайность, пластическая деформация, излом, твердость, хрупкость).

Способность самоограняться, т.е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы одного и того же минерала могут иметь разную форму, величину и число граней, но углы между соответствующими гранями всегда будут постоянными (рис. 4 а-г) - это закон постоянства гранных углов в кристаллах. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры. Углы между гранями кристаллов измеряются при помощи гониометра (угломера). Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу.

У идеально образованных кристаллов наблюдается симметрия, которая у природных кристаллов встречается чрезвычайно редко из-за опережающего роста граней (рис. 4 д).

Рис. 4 закон постоянства гранных углов в кристаллах (а-г) и рост опережающих граней 1,3 и 5 растущего на стенке полости кристалла (д)

Спайностью называется такое свойство кристаллов при котором раскалываться или расщепляться по определенным кристаллографическим направлениям в итоге образовываются ровные гладкие плоскости, называемые плоскостями спайности.

Плоскости спайности ориентированы параллельно действительным или возможным граням кристаллов. Это свойство всецело зависит от внутреннего строения минералов и проявляется в тех направлениях, в которых силы сцепления между материальными частицами кристаллических решеток наименьшие.

Можно выделить в зависимости от степени совершенства несколько видов спайности:

Весьма совершенная - минерал легко расщепляется на отдельные тонкие пластинки или листочки, расколоть его в другом направлении очень трудно (слюды, гипс, тальк, хлорит).

Рис. 5 Хлорит (Mg, Fe) 3 (Si, Al) 4 O 10 (OH) 2 ·(Mg, Fe) 3 (OH) 6)

Совершенная - минерал сравнительно легко раскалывается преимущественно по плоскостям спайности, причем отбитые кусочки часто напоминают отдельные кристаллы (кальцит, галенит, галит, флюорит).

Рис. 6 Кальцит

Средняя - при раскалывании образуются как плоскости спайности, так и неровные изломы по случайным направлениям (пироксены, полевые шпаты).

Рис. 7 Полевые шпаты ({К, Na, Ca, иногда Ba} {Al 2 Si 2 или AlSi 3 } О 8))

Несовершенная - минералы раскалываются по произвольным направлениям с образованием неровных поверхностей излома, отдельные плоскости спайности обнаруживаются с трудом (самородная сера, пирит, апатит, оливин).

Рис. 8 Кристаллы апатита (Са 5 3 (F, Cl, ОН))

У некоторых минералов при раскалывании образуются только неровные поверхности, в этом случае говорят о весьма несовершенной спайности или отсутствии ее (кварц).

Рис. 9 Кварц(SiO 2)

Спайность может проявляться в одном, двух, трех, редко более направлениях. Для более детальной характеристики ее указывают направление, в котором проходит спайность, например по ромбоэдру - у кальцита, по кубу - у галита и галенита, по октаэдру - у флюорита.

Плоскости спайности нужно отличать от граней кристаллов: Плоскость, как правило, обладает более сильным блеском, образуют ряд параллельных друг другу плоскостей и в отличие от граней кристаллов на которых мы не можем наблюдать штриховки.

Таким образом, спайность может прослеживаться по одному (слюды), двум (полевые шпаты), трем (кальцит, галит), четырем (флюорит) и шести (сфалерит) направлениям. Степень совершенства спайности зависит от строения кристаллической решетки каждого минерала, так как разрыв по некоторым плоскостям (плоским сеткам) этой решетки из-за более слабых связей происходит гораздо легче, чем по другим направлениям. В случае одинаковых сил сцепления между частицами кристалла, спайность отсутствует (кварц).

Излом - способность минералов раскалываться не по плоскостям спайности, а по сложной неровной поверхности

Отдельность - свойство некоторых минералов раскалываться с образованием параллельных, хотя чаще всего не совсем ровных плоскостей, не обусловленных строением кристаллической решетки, которое иногда принимают за спайность. В отличие от спайности отдельность - свойство лишь некоторых отдельных экземпляров данного минерала, а не минерального вида в целом. Главным отличием отдельности от спайности является то, что получившиеся выколки невозможно расщеплять далее на более мелкие обломки с ровными параллельными сколами.

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Для удобства изучения пользуются моделями кристаллов, передающих формы идеальных кристаллов. Для описания симметрии кристаллов необходимо определить элементы симметрии. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (рисунок 10).

1. Плоскость симметрии - это воображаемая плоскость, которая делит кристалл на две равные части, причем одна из частей является как бы зеркальным отражение другой. В кристалле может быть несколько плоскостей симметрии. Плоскость симметрии обозначается латинской буквой Р.

2. Ось симметрии - это линия, при вращении вокруг которой на 360° кристалл n-ое количество раз повторяет свое начальное положение в пространстве. Обозначается буквой L. n - определяет порядок оси симметрии, которые в природе могут быть только 2, 3, 4 и 6-го порядка, т.е. L2, L3, L4 и L6. Осей пятого и выше шестого порядка в кристаллах нет, а оси первого порядка не учитываются.

3. Центр симметрии - воображаемая точка, расположенная внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие соответствующие точки на поверхности кристалла1. Центр симметрии обозначается буквой С.

Все многообразие встречающихся в природе кристаллических форм объединяется в семь сингоний (систем): 1) кубическую; 2) гексагональную; 3) тетрагональную (квадратную); 4) тригональную; 5) ромбическую; 6) моноклинальную и 7) триклинную.

4. Постоянная температура плавления

Плавление - переход вещества из твердого состояния в жидкое.

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Причиной этого явления, считается что основная часть энергия нагревателя, подводимая к твердому телу, идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Расплавленное вещество обладает большим запасом внутренней энергии, чем в твердом состоянии. Оставшаяся часть теплоты плавления расходуется на совершение работы по изменению объема тела при его плавлении. Температура, при которой начинается плавление, называется температурой плавления.

При плавлении объем большинства кристаллических тел увеличивается (на 3-6%), а при отвердевании уменьшается. Но, существуют вещества, у которых при плавлении объем уменьшается, а при отвердевании - увеличивается.

К ним относятся, например, вода и чугун, кремний и некоторые другие. Именно поэтому лёд плавает на поверхности воды, а твердый чугун - в собственном расплаве.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления (янтарь, смола, стекло).

Рис. 12 Янтарь

Количество теплоты, необходимой для плавления вещества, равно произведению удельной теплоты плавления на массу данного вещества.

Удельная теплота плавления показывает, какое кол теплоты необходимо для полного превращения 1 кг вещества из твердого состояния в жидкое, взятого при темп плавления.

Единицей удельной теплоты плавления в СИ служит 1Дж/кг.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления. У каждого вещества своя температура плавления.

Температура плавления для данного вещества зависит от атмосферного давления.

У кристаллических тел при температуре плавления можно наблюдать вещество одновременно в твердом и жидком состояниях. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Список литературы

1. Справочник химика 21 «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» стр. 10 (http://chem21.info/info/1737099/)

2. Справочник по геологии (http://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html)

3. «УрФУ имени первого Президента России Б.Н. Ельцина», раздел Геометрическая кристаллография (http://media.ls.urfu.ru/154/489/1317/)

4. Глава 1. Кристаллография с основами кристаллохимии и минералогия (http://kafgeo.igpu.ru/web-text-books/geology/r1-1.htm)

5. Заявка: 2008147470/13, 01.12.2008; МПК C13F1/02 (2006.01) C13F1/00 (2006.01). Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU) (http://bd.patent.su/2371000-2371999/pat/servl/servlet939d.html)

6. Тульский государственный педагогический университет им Л.Н. Толстого Кафедра экологии Голынская Ф.А. «Понятие о минералах как о кристаллических веществах» (http://tsput.ru/res/geogr/geology/lec2.html)

7. Компьютерный обучающий курс «Общая геология» Курс лекций. Лекция 3 (http://igd.sfu-kras.ru/sites/igd.institute.sfu-kras.ru/files/kurs-geologia/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D0% B8/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D1% 8F_3.htm)

8. Класс физика (http://class-fizika.narod.ru/8_11.htm)

Подобные документы

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа , добавлен 06.12.2013

    Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.

    реферат , добавлен 18.12.2013

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".

    реферат , добавлен 28.12.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    презентация , добавлен 29.09.2013

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

Лекция 16

Физические свойства кристаллов

Изучением структуры и физических свойств твердых тел занимается физика твердого тела. Она устанавливает зависимость физических свойств от атомной структуры вещества, разрабатывает методы получения и исследования новых кристаллических материалов, обладающих заданными характеристиками.

Физические свойства кристаллов определяются:

1) природой химических элементов, входящих в состав кристаллов;

2) типом химической связи;

3) геометрическим характером структуры, т. е. взаимным расположением атомов в кристаллической структуре;

4) несовершенством структуры, т. е. наличием дефектов.

С другой стороны, именно по физическим свойствам кристаллов мы обычно судим о типе химической связи.

О прочности кристаллов проще всего можно судить по их механическим и термическим свойствам. Чем прочнее кристалл, тем больше его твердость и тем выше его температура плавления. Если изучать изменение твердости с изменением состава в ряду однотипных веществ и сопоставлять полученные данные с соответствующими значениями для температур плавления, то можно заметить «параллелизм» в изменении этих свойств.

Напомню, что самой характерной особенностью физических свойств кристаллов является их симметрия и анизотропия . Анизотропная среда характеризуется зависимостью измеряемого свойства от направления измерения.

Мы уже говорили, что кристаллохимия тесно связана с кристаллографией и физикой. Поэтому, основной задачей кристаллофизики (раздела кристаллографии, изучающего физические свойства кристаллов) является изучение закономерностей физических свойств кристаллов от их строения, а также зависимости этих свойств от внешних воздействий.

Физические свойства веществ можно подразделить на две группы: структурно чувствительные и структурно нечувствительные свойства. Первые зависят от атомной структуры кристаллов, вторые - главным образом от электронного строения и типа химической связи. Примером первых могут служить механические свойства (масса, плотность, теплоемкость, температура плавления и др.), примером вторых - тепло - и электропроводность , оптические и др. свойства.

Так, хорошая электропроводность металлов, обусловленная наличием свободных электронов, будет наблюдаться не только в кристаллах, но и в расплавленных металлах.

Ионный характер связи проявляется, в частности, в том, что многие соли, например, галогениды щелочных металлов, растворяются в полярных растворителях, диссоциируя на ионы. Однако факт отсутствия растворимости не может еще служить доказательством наличия у соединения неполярной связи. Так, энергия связи, например, у оксидов настолько больше энергии связи щелочных галогенидов, что диэлектрическая постоянная воды уже недостаточна для отрыва ионов от кристалла.

Кроме того, некоторые соединения, преимущественно с гомеополярным типом связи, под влиянием большой диэлектрической постоянной полярного растворителя могут в растворе диссоциировать на ионы, хотя в кристаллическом состоянии ионными соединениями они могут и не быть (например НСl, НВr).

В гетеродесмических соединениях некоторые свойства, например механическая прочность соединений, зависят только от одного (слабейшего) типа связи.

Поэтому, кристалл можно рассматривать, с одной стороны, как прерывистую (дискретную) среду. С другой стороны – кристаллическое вещество можно рассматривать как сплошную анизотропную среду. В этом случае физические свойства, проявляющиеся в определенном направлении, не зависят от трансляций (переносов). Это позволяет описывать симметрию физических свойств с помощью точечных групп симметрии.

Описывая симметрию кристалла, мы принимаем во внимание только внешнюю форму, т. е. рассматривает симметрию геометрических фигур. П. Кюри показал, что симметрия материальных фигур описывается бесконечным числом точечных групп, которые в пределе стремятся к рассмотренным ранее семи предельным группам симметрии (семейства вращающегося конуса, неподвижного конуса, вращающегося цилиндра, скрученного цилиндра, неподвижного цилиндра, семейства шара с вращающимися точками поверхности, семейства неподвижного шара).

Предельными точечными группами ‑ группами Кюри – называются точечные группы, содержащие оси бесконечных порядков. Существует всего семь предельных групп: ¥, ¥mm, ¥/m, ¥22, ¥/mm, ¥/¥, ¥/¥mm.

Связь между точечной группой симметрии кристалла и симметрией его физических свойств сформулировал немецкий физик Ф. Нейманн: материал в отношении физических свойств обнаруживает симметрию того же рода, что и его кристаллографическая форма. Это положение известно как принцип Неймана.

Ученик Ф. Немана немецкий физик В. Фойгт существенно уточнил указанный принцип и сформулировал его следующим образом: группа симметрии любого физического свойства должна включать в себя все элементы точечной группы симметрии кристалла.

Рассмотрим некоторые физические свойства кристаллов.

Плотность кристаллов.

Плотность вещества зависит от кристаллической структуры вещества, его химического состава, коэффициента упаковки атомов, валентностей и радиусов слагающих ее частиц.

Плотность изменяется с изменением температуры и давления, т. к. эти факторы вызывают расширение или сжатие вещества.

Зависимость плотности от структуры можно продемонстрировать на примере трех модификаций Al2SiO5:

· андалузит (r = 3,14 – 3,16 г/см3);

· силлиманит (r = 3,23 – 3,27 г/см3);

· кианит (r = 3,53 – 3,65 г/см3).

С увеличением коэффициента упаковки кристаллической структуры плотность вещества возрастает. Например, при полиморфном переходе графита в алмаз с изменением координационного числа атомов углерода с 3 до 4 соответственно возрастает и плотность от 2,2 до 3,5 г/см3).

Плотность реальных кристаллов обычно меньше, чем расчетная плотность (идеальных кристаллов) из-за присутствия дефектов в их структурах. Плотность алмаза, например, колеблется в пределах 2,7 – 3,7 г/см3. Таким образом, по уменьшению реальной плотности кристаллов можно судить о степени их дефектности.

Плотность изменяется и с изменением химического состава вещества при изоморфных замещениях – при переходе от одного члена изоморфного ряда к другому. Например, в ряду оливинов (Mg , Fe 2+ )2[ SiO 4 ] плотность возрастает по мере замены катионов Mg2+ на Fe2+ от r = 3,22 г/см3 у форстерита Mg 2 [ SiO 4 ] до r = 4,39 г/см3 у фаялита .

Твердость.

Под твердостью подразумевается степень сопротивления кристалла внешнему воздействию. Твердость не является физической постоянной. Ее величина зависит не только от изучаемого материала, но и от условий измерения.

Твердость зависит от:

· типа структуры;

· коэффициента упаковки (удельного веса);

· заряда образующих кристалл ионов.

Например, полиморфные модификации CaCO3 – кальцит и арагонит – имеют плотности 3 и 4 соответственно и отличаются разной плотностью их структур:

· для структуры кальцита с КЧСа = 6 ‑ r = 2,72;

· для структуры арагонита с КЧСа = 9 ‑ r = 2,94 г/см3).

В ряду одинаково построенных кристаллов твердость возрастает у увеличением зарядов и уменьшением размеров катионов. Присутствие в структурах достаточно крупных анионов типа F-, OH-, молекул Н2О понижает твердость.

Грани разных форм кристаллов обладают различной ретикулярной плотностью и отличаются по своей твердости. Так, наибольшей твердостью в структуре алмаза обладают грани октаэдра (111), имеющие большую ретикулярную плотность по сравнению с гранями куба (100).

Способность к деформации.

Способность кристалла к пластической деформации определяется, прежде всего, характером химической связи между его структурными элементами.

Ковалентная связь , обладающая строгой направленностью, резко ослабевает уже при незначительных смещениях атомов относительно друг друга. Поэтому кристаллы с ковалентным типом связи (Sb, Bi, As, se и др.) не проявляют способность к пластической деформации.

Металлическая связь не имеет направленного характера и при смещении атомов относительно друг друга меняется слабо. Это определяет высокую степень пластичности металлов (ковкость). Наиболее ковкими являются те металлы, структуры которых построены по закону кубической плотнейшей упаковки, имеющей четыре направления плотноупакованных слоев. Менее ковки металлы с гексагональной плотнейшей упаковкой – с одним направлением плотнейших слоев. Так, среди полиморфных модификаций железа a-Fe и b-Fe ковкостью почти не обладают (решетка I типа), тогда как g-Fe с кубической плотнейшей упаковкой (гранецентрированная кубическая решетка) – ковкий металл как Cu, Pt, Au, Ag и др.

Ионная связь не имеет направленного характера. Поэтому типичные ионные кристаллы (NaCl, CaF2, CaTe и др.) такие же хрупкие, как кристаллы с ковалентной связью. Но в то же время они обладают достаточно высокой пластичностью. Скольжение в них протекает оп определенным кристаллографическим направлениям. Это объясняется тем, что в структуре кристалла можно выделить сетки (110), образованные либо одними ионами Na+, либо ионами Cl-. При пластической деформации одна плоская сетка передвигается относительно соседней таким образом, что ионы Na+ скользят вдоль ионов Cl-. Разноименность зарядов ионов в соседних сетках препятствует разрыву, и они остаются параллельными своему исходному положению. Скольжение вдоль этих слоев протекает при минимальном нарушении в расположении атомов и является наиболее легким.

Тепловые свойства кристаллов.

Теплопроводность тесно связана с симметрией. Наиболее наглядно это можно продемонстрировать на следующем опыте. Покроем тонким слоем парафина грани трех кристаллов: куба, гексагональной призмы, прямого параллелепипеда. Острием тонкой раскаленной иглы прикоснемся к каждой из граней этих кристаллов. По очертаниям пятен плавления можно судить о скорости распространения теплоты на плоскостях граней по различным направлениям.

На кристалле кубической сингонии контуры пятен плавления на всех гранях будут иметь форму круга, что указывает на одинаковую скорость распространения теплоты по всем направлениям от точки касания горячей иглой. Форма пятен в идее кругов на всех гранях кубического кристалла связана с его симметрией.

Форма пятен на верхней и нижней гранях гексагональной призмы будет также иметь форму круга (скорость распространения теплоты в плоскости, перпендикулярной главной оси кристалла средней категории одинакова по всем направлениям). На гранях гексагональной призмы пятна плавления будут иметь форму эллипсов, так как перпендикулярно этим граням проходят оси 2-го порядка.

На всех гранях прямого параллелепипеда (кристалл ортогональной сингонии) пятна плавления будут иметь форму эллипса, т. к. перпендикулярно этим граням проходят оси 2-го порядка.

Итак, скорость распространения теплоты по телу кристалла находится в прямой зависимости от того, вдоль какого линейного элемента симметрии она распространяется. В кристаллах кубической сингонии поверхность распространения теплоты будет иметь форму сферы. Следовательно, в отношении теплопроводности кристаллы кубической сингонии являются изотропными, т. е. по всем направлениям равносвойственными. Поверхность теплопроводности кристаллов средней категории выражается эллипсоидом вращения (параллельно главной оси). В кристаллах низшей категор ии все поверхности теплопроводности имеют форму эллипсоида.

Анизотропия теплопроводности тесно связана со структурой кристаллического вещества. Так, наиболее плотным атомным сеткам и рядам соответствуют большие значения теплопроводности. Поэтому слоистые и цепочечные кристаллы имеют большие различия в направлениях теплопроводности.

Теплопроводность зависит также от степени дефектности кристалла – у более дефектных кристаллов она ниже, чем у синтетических. Вещество в аморфном состоянии обладает более низкой теплопроводностью, чем кристаллы того же состава. Например, теплопроводность кварцевого стекла значительно ниже теплопроводности кристаллов кварца. На этом свойстве основано широкое применение посуды из кварцевого стекла.

Оптические свойства.

Каждое вещество с определенной кристаллической структурой характеризуется своеобразными оптическими свойствами. Оптические свойства тесно связаны с кристаллическим строением твердых тел, его симметрией.

В отношении оптических свойств все вещества можно разделить на оптически изотропные и анизотропные. К первым относятся аморфные тела и кристаллы высшей категории, ко вторым – все остальные. В оптически изотропных средах световая волна, представляющая собой совокупность поперечных гармонических колебаний электромагнитной природы, распространяется с одинаковой скоростью во всех направления. При этом колебания вектора напряженности электрического и магнитного полей происходят также по всевозможным направлениям, но в плоскости, перпендикулярной направлению луча. Вдоль его направления происходит передача световой энергии. Такой свет называется естественным или неполяризованным (рисунок а, б).

В оптически анизотропных средах скорости распространения волны в разных направлениях могут быть различными. При определенных условиях может быть получен так называемый поляризованный свет , для которого все колебания вектора электрического и магнитного полей проходят в строго определенном направлении (рисунок в, г). На поведении такого поляризованного света в кристаллах основана методика кристаллооптических исследований с помощью поляризационного микроскопа.

Двойное лучепреломление света в кристаллах.

линейно поляризованным с взаимно перпендикулярными плоскостями колебаний. Разложение света на два поляризованных луча называется двойным лучепреломлением или двупреломлением.

Двупреломление света наблюдается в кристаллах всех сингоний, за исключением кубической. В кристаллах низшей и средней категории двупреломление происходит по всем направлениям, за исключением одного или двух направлений, называемых оптическими осями .

Явление двупреломления связано с анизотропией кристаллов. Оптическая анизотропность кристаллов выражается в том, что скорость распространения света в них различна по разным направлениям.

В кристаллах средней категории среди множества направлений оптической анизотропии существует одно единичное направление – оптическая ось , совпадающее с главной осью симметрии 3-го, 4-го, 6-го порядков. Вдоль этого направления свет идет не раздваиваясь.

В кристаллах низшей категории имеется два направления, вдоль которых свет не раздваивается. Сечения кристаллов, перпендикулярные этим направлениям, совпадают с оптически изотропными сечениями.

Влияние структурных особенностей на оптические свойства.

В кристаллических структурах со слоями из плотноупакованных атомов расстояние между атомами внутри слоя превышают расстояние между ближайшими атомами, расположенными в соседних слоях. Подобная упорядоченность приводит к более легкой поляризации, если вектор напряжения электрического поля световой волны будет параллелен плоскости слоев.

Электрические свойства.

Все вещества можно разделить на проводники, полупроводники и диэлектрики.

Некоторые кристаллы (диэлектрики) поляризуются под влиянием внешних воздействий. Способность диэлектриков поляризоваться – одно из их фундаментальных свойств. Поляризация – это процесс, связанный с созданием в диэлектрике под действием внешнего электрического поля электрических диполей.

В кристаллографии и физике твердого тела важное теоретическое практическое значение получили явления пьезоэлектричества и пироэлектричества.

Пьезоэлектрический эффект – изменение поляризации некоторых диэлектрических кристаллов при механической деформации. Величина возникших зарядов пропорциональна приложенной силе. Знак заряда зависит от типа кристаллической структуры. Пьезоэлектрический эффект возникает только в кристаллах, лишенных центра инверсии, т. е. имеющих полярные направления. Например, кристаллы кварца SiO2, сфалерита (ZnS).

Пироэлектрический эффект – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. Пироэлектрический эффект возникает только в диэлектрических кристаллах с единственным полярным направлением, противоположные концы которого не могут быть совмещены ни одной операцией данной группы симметрии. Появление электрических зарядов может происходить только по определенным, полярным направления. Грани, перпендикулярные этим направлениям, получают разные по знаку заряды: одна – положительный, а другая – отрицательный. Пироэлектрический эффект может возникнуть в кристаллах, относящихся к одному из полярных классов симметрии: 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm.

Из геометрической кристаллографии следует, что направления, проходящие через центр симметрии, не могут быть полярными. Не могут быть полярными и направления, перпендикулярные плоскостям симметрии или осям четного порядка.

В классе пироэлектриков выделяют два подкласса. К первому относятся линейные пироэлектрики, у которых во внешнем поле электрическая поляризация линейно зависит от напряженности электрического поля. Например, турмалин NaMgAl3B3.Si6(O, OH)30.

Кристаллы второго подкласса называются сегнетоэлектриками. У них зависимость поляризации от напряженности внешнего поля носит нелинейный характер и поляризуемость зависит от величины внешнего поля. Нелинейная зависимость поляризации от напряженности электрического поля характеризуется петлей гистерезиса. Эта особенность сегнетоэлектриков предполагает сохранение у них электрической поляризации в отсутствии внешнего поля. Благодаря этому кристаллы сегнетовой соли (отсюда название сегнетоэлектрики) оказались надежными хранителями электрической энергии и регистраторами электрических сигналов, что позволяет их использовать в «ячейках памяти» ЭВМ.

Магнитные свойства.

Это способность тел взаимодействовать с магнитным полем, т. е. намагничиваться при помещении их в магнитное поле. В зависимости от величины магнитной восприимчивости различают диамагнитные, парамагнитные, ферромагнитные и антиферромагнитные кристаллы.

Магнитные свойства всех веществ зависят не только от особенностей их кристаллической структуры, но и от природы слагающих их атомов (ионов), т. е. магнетизм определяется электронным строением оболочек и ядер, а также орбитальным движением вокруг них электронов (спинами).

При внесении атома (иона) в магнитное поле изменяется угловая скорость движения электронов на орбите за счет того, что на первоначальное вращательное движение электронов вокруг ядра накладывается дополнительное вращательное движение, в результате чего атом получает дополнительный магнитный момент. При этом если все электроны с противоположными спинами в атоме сгруппированы попарно (рисунок А), то магнитные моменты электронов оказываются скомпенсированными и их суммарный магнитный момент будет равен нулю. Такие атомы называются диамагнитными, а вещества, состоящие из них – диамагнетиками . Например, инертные газы, металлы В-подгрупп – Cu, Ag, Au, Zn, Cd, большинство ионных кристаллов (NaCl, CaF2), а также вещества с преобладающей ковалентной связью – Bi, Sb, Ga, графит. В кристаллах со слоистыми структурами магнитная восприимчивость для направлений, лежащих в слое, значительной превышает таковую для перпендикулярных направлений.

При заполнении электронных оболочек в атомах электроны стремятся быть неспаренными. Поэтому существует большое количество веществ, магнитные моменты электронов, в атомах которых, расположены беспорядочно и при отсутствии внешнего магнитного поля в них не происходит самопроизвольная ориентация магнитных моментов (рисунок Б). Суммарный магнитный момент, обусловленный несвязанными попарно и слабо взаимодействующими друг с другом электронами, будет постоянным, положительным или несколько большим, чем у диэлектриков. Такие атомы называются магнитными, а вещества – парамагнетиками . При внесении парамагнетика в магнитное поле разориентированные спины приобретут некоторую ориентировку, в результате чего наблюдаются три типа упорядочения нескомпенсированных магнитных моментов – три типа явлений: ферромагнетизм (рисунок В), антиферромагнетизм (рисунок Г) и ферримагнетизм (рисунок Д).

Ферромагнитными свойствами обладают вещества, магнитные моменты атомов (ионов) которых направлены параллельно друг другу, в результате чего внешнее магнитное поле может усилиться в миллионы раз. Название группы связано с присутствием в ней элементов подгруппы железа Fe, Ni, Co.

Если магнитные моменты отдельных атомов антипараллельны и равны, то суммарный магнитный момент атомов равен нулю. Такие вещества называются антиферромагнетиками. К ним относятся оксиды переходных металлов – MnO, NiO, CoO, FeO, многие фториды, хлориды, сульфиды, селениды и др.

При неравенстве антипараллельных моментов атомов структуры кристаллов суммарный момент оказывается отличным от нуля и такие структуры обладают спонтанной намагниченность. Подобными свойствами обладают ферриты (Fe3O4, минералы группы граната).

Свойства кристаллов, форма и сингония (кристаллографические системы)

Важным свойством кристалла является определенное соответствие между разными гранями - симметрия кристалла. Выделяются следующие элементы симметрии:

1. Плоскости симметрии: разделяют кристалл на две симметричные половины, такие плоскости также называют "зеркалами" симметрии.

2. Оси симметрии: прямые линии, проходящие через центр кристалла. Вращение кристалла вокруг этой оси повторяет форму исходного положения кристалла. Различают оси симметрии 3-го, 4-го и 6-го порядка, что соответствует числу таких позиций при вращении кристалла на 360 o .

3. Центр симметрии: грани кристалла, соответствующие параллельной грани, меняются местами при вращении на 180 o вокруг этого центра. Комбинация этих элементов симметрии и порядков дает 32 класса симметрии для всех кристаллов. Эти классы, в соответствии с их общими свойствами, можно объединить в семь сингонии (кристаллографических систем). По трехмерным осям координат можно определить и оценить позиции граней кристаллов.

Каждый минерал принадлежит к одному классу симметрии, поскольку имеет один тип кристаллической решетки, который его и характеризует. Напротив, минералы, имеющие одинаковый химический состав, могут образовывать кристаллы двух и более классов симметрии. Такое явление называется полиморфизмом. Есть не единичные примеры полиморфизма: алмаз и графит, кальцит и арагонит, пирит и марказит, кварц, тридимит и кристобалит; рутил, анатаз (он же октаэдрит) и брукит.

СИНГОНИИ (КРИСТАЛЛОГРАФИЧЕСКИЕ СИСТЕМЫ) . Все формы кристаллов образуют 7 сингонии (кубическую, тетрагональную, гексагональную, тригональную, ромбическую, моноклинную, триклинную). Диагностическими признаками сингонии являются кристаллографические оси и углы, образуемые этими осями.

В триклинной сингонии присутствует минимальное число элементов симметрии. За ней в порядке усложнения следуют моноклинная, ромбическая, тетрагональная, тригональная, гексагональная и кубическая сингонии.

Кубическая сингония . Все три оси имеют равную длину и расположены перпендикулярно друг другу. Типичные формы кристаллов: куб, октаэдр, ромбододекаэдр, пентагондодекаэдр, тетрагон-триоктаэдр, гексаоктаэдр.

Тетрагональная сингония . Три оси расположены перпендикулярно друг другу, две оси имеют одинаковую длину, третья (главная ось) либо короче, либо длиннее. Типичные формы кристаллов - призмы, пирамиды, тетрагоны, трапецоэдры и бипирамиды.

Гексагональная сингония . Третья и четвертая оси расположены наклонно к плоскости, имеют равную длину и пересекаются под углом 120 o . Четвертая ось, отличающаяся от остальных по размеру, расположена перпендикулярно к другим. И оси и углы по расположению аналогичны предыдущей сингонии, но элементы симметрии весьма разнообразны. Типичные формы кристаллов - трехгранные призмы, пирамиды, ромбоэдры и скаленоэдры.

Ромбическая сингония . Характерны три оси, перпендикулярные друг другу. Типичные кристаллические формы - базальные пинакоиды, ромбические призмы, ромбические пирамиды и бипирамиды.

Моноклинная сингония . Три оси разной длины, вторая перпендикулярна другим, третья находится под острым углом к первой. Типичные формы кристаллов - пинакоиды, призмы с кососрезанными гранями.

Триклинная сингония . Все три оси имеют разную длину и пересекаются под острыми углами. Типичные формы - моноэдры и пинакоиды.

Форма и рост кристаллов . Кристаллы, принадлежащие к одному минеральному виду, имеют схожий внешний вид. Кристалл поэтому можно охарактеризовать как сочетание внешних параметров (граней, углов, осей). Но относительный размер этих параметров довольно разный. Следовательно, кристалл может менять свой облик (чтобы не сказать внешность) в зависимости от степени развития тех или иных форм. Например, пирамидальный облик, где все грани сходятся, столбчатый (в совершенной призме), таблитчатый, листоватый или глобулярный.

Два кристалла, имеющих то же сочетание внешних параметров, могут иметь разный вид. Сочетание это зависит от химического состава среды кристаллизации и других условий формирования, к которым относятся температура, давление, скорость кристаллизации вещества и т. д. В природе изредка встречаются правильные кристаллы, которые формировались в благоприятных условиях - это, например, гипс в глинистой среде или минералы на стенках жеоды. Грани таких кристаллов хорошо развиты. Наоборот, кристаллы, образовавшиеся в изменчивых или неблагоприятных условиях, часто бывают деформированы.

АГРЕГАТЫ . Часто встречаются кристаллы, которым не хватало пространства для роста. Эти кристаллы срастались с другими, образуя неправильные массы и агрегаты. В свободном пространстве среди горных пород кристаллы развивались совместно, образуя друзы, а в пустотах - жеоды. По своему строению такие агрегаты весьма разнообразны. В мелких трещинах известняков встречаются образования, напоминающие окаменевший папоротник. Их называют дендритами, сформировавшимися в результате образования оксидов и гидрооксидов марганца и железа под воздействием растворов, циркулировавших в этих трещинах. Следовательно, дендриты никогда не образуются одновременно с органическими остатками.

Двойники . При формировании кристаллов часто образуются двойники, когда два кристалла одного минерального вида срастаются друг с другом по определенным правилам. Двойники часто представляют собой индивидов, сросшихся под углом. Нередко проявляется псевдосимметрия - несколько кристаллов, относящихся к низшему классу симметрии, срастаются, образуя индивиды с псевдосимметрией более высокого порядка. Так, арагонит, относящийся к ромбической сингонии, часто образует двойниковые призмы с гексагональной псевдосимметрией. На поверхности таких срастаний наблюдается тонкая штриховка, образованная линиями двойникования.

ПОВЕРХНОСТЬ КРИСТАЛЛОВ . Как уже сказано, плоские поверхности редко бывают гладкими. Довольно часто на них наблюдается штриховка, полосчатость или бороздчатость. Эти характерные признаки помогают при определении многих минералов - пирита, кварца, гипса, турмалина.

ПСЕВДОМОРФОЗЫ . Псевдоморфозы - это кристаллы, имеющие форму другого кристалла. Например, встречается лимонит в форме кристаллов пирита. Псевдоморфозы образуются при полном химическом замещении одного минерала другим с сохранением формы предыдущего.


Формы агрегатов кристаллов могут быть очень разнообразны. На фото - лучистый агрегат натролита.
Образец гипса со сдвойникованными кристаллами в виде креста.

Физические и химические свойства. Не только внешняя форма и симметрия кристалла определяются законами кристаллографии и расположением атомов - это относится и к физическим свойствам минерала, которые могут быть разными в различных направлениях. Например, слюда может разделяться на параллельные пластинки только в одном направлении, поэтому ее кристаллы анизотропны. Аморфные вещества одинаковы по всем направлениям, и поэтому изотропны. Такие качества также важны для диагностики этих минералов.

Плотность. Плотность (удельный вес) минералов представляет собой отношение их веса к весу такого же объема воды. Определение удельного веса является важным средством диагностики. Преобладают минералы с плотностью 2-4. Упрощенная оценка веса поможет при практической диагностике: легкие минералы имеют вес от 1 до 2, минералы средней плотности - от 2 до 4, тяжелые минералы от 4 до 6, очень тяжелые - более 6.

МЕХАНИЧЕСКИЕ СВОЙСТВА . К ним относятся твердость, спайность, поверхность скола, вязкость. Эти свойства зависят от кристаллической структуры и используются с целью выбора методики диагностирования.

ТВЕРДОСТЬ . Довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится - лезвие скользнет по камню, не оставив царапины. Значит, твердость у этих двух минералов различная.

Твердостью по отношению к царапанью называют сопротивление кристалла попытке внешней деформации поверхности, другими словами, сопротивление механической деформации извне. Фридрих Моос (1773-1839) предложил относительную шкалу твердости из степеней, где каждый минерал имеет твердость к процарапыванию выше, чем предыдущий: 1. Тальк. 2. Гипс. 3. Кальцит. 4. Флюорит. 5. Апатит. 6. Полевой шпат. 7. Кварц. 8. Топаз. 9. Корунд. 10. Алмаз. Все эти значения применимы только к свежим, не подвергшимся выветриванию образцам.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапаются ногтем; при этом они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает минералы до твердости 5; хороший новый напильник - кварц. Минералы с твердостью более 6 царапают стекло (твердость 5). От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они поддаются; затем берут образец, который, очевидно, еще тверже. Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у минерала, нужного для образца.


Тальк и алмаз, два минерала, занимающие крайние позиции в шкале твердости Мооса.

Легко сделать вывод на основании того, скользит ли минерал по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:
1. Твердость одинакова, если образец и минерал взаимно не царапают друг друга.
2. Возможно, что оба минерала друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
3. Минерал царапает первый образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемыми для сравнения образцами, и ее можно оценить в полкласса.

Несмотря на очевидную простоту такого определения твердости, многие факторы могут привести к ложному результату. Например, возьмем минерал, свойства которого сильно разнятся по разным направлениям, как у дистена (кианита): по вертикали твердость 4-4,5, и кончик ножа оставляет четкий след, но в перпендикулярном направлении твердость 6-7 и ножом минерал вообще не царапается. Происхождение названия этого минерала связано с этой особенностью и подчеркивает ее весьма выразительно. Поэтому необходимо проводить испытание твердости по разным направлениям.

Некоторые агрегаты имеют более высокую твердость, чем те компоненты (кристаллы или зерна), из которых они состоят; может оказаться, что плотный обломок гипса трудно поцарапать ногтем. Наоборот, некоторые пористые агрегаты менее твердые, что объясняется наличием пустот между гранулами. Поэтому мел царапается ногтем, хотя состоит из кристаллов кальцита с твердостью 3. Другой источник ошибок - минералы, испытавшие какие-то изменения. Оценить твердость порошкообразных, выветрелых образцов или агрегатов чешуйчатого и игольчатого строения простыми средствами невозможно. В таких случаях лучше использовать другие методы.

Спайность . Ударом молотка или нажатием ножа кристаллы по плоскостям спайности кристалл иногда можно разделить на пластинки. Спайность проявляется по плоскостям с минимальным сцеплением. Многие минералы обладают спайностью по нескольким направлениям: галит и галенит - параллельно граням куба; флюорит - по граням октаэдра, кальцит - ромбоэдра. Кристалл слюды-мусковита; хорошо видны плоскости спайности (на фото справа).

Такие минералы, как слюда и гипс, имеют совершенную спайность в одном направлении, а в других направлениях спайность несовершенная или вообще отсутствует. При тщательном наблюдении можно заметить внутри прозрачных кристаллов тончайшие плоскости спайности по хорошо выраженным кристаллографическим направлениям.

Поверхность излома . Многие минералы, например кварц и опал, не имеют спайности ни в одном направлении. Их основная масса раскалывается на неправильные куски. Поверхность скола можно описать как плоскую, неровную, раковистую, полураковистую, шероховатую. Металлы и крепкие минералы имеют шероховатую поверхность скола. Это свойство может служить диагностическим признаком.

Другие механические свойства . Некоторые минералы (пирит, кварц, опал) раскалываются на куски под ударом молотка - они являются хрупкими. Другие, наоборот, превращаются в порошок, не давая обломков.

Ковкие минералы можно расплющить, как, например, чистые самородные металлы. Они не образуют ни порошка, ни обломков. Тонкие пластинки слюды можно согнуть, как фанеру. После прекращения воздействия они вернутся в исходное состояние - это свойство эластичности. Другие, как гипс и пирит, можно согнуть, но они сохранят деформированное состояние - это свойство гибкости. Такие признаки позволяют распознавать сходные минералы - например, отличить эластичную слюду от гибкого хлорита.

Окраска . Некоторые минералы имеют настолько чистый и красивый цвет, что их используют как краски или лаки. Часто их названия применяют в обиходной речи: изумрудно-зеленый, рубиново-красный, бирюзовый, аметистовый и др. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Есть ряд минералов, у которых окраска постоянная - малахит всегда зеленый, графит - черный, самородная сера - желтая. Такие распространенные минералы, как кварц (горный хрусталь), кальцит, галит (поваренная соль), бесцветны, когда в них нет примесей. Однако наличие последних вызывает окраску, и мы знаем голубую соль, желтый, розовый, фиолетовый и коричневый кварц. Флюорит обладает целой гаммой окрасок.

Присутствие элементов-примесей в химической формуле минерала приводит к весьма специфической окраске. На этой фотографии изображен зеленый кварц (празем), в чистом виде совершенно бесцветный и прозрачный.

Турмалин, апатит и берилл имеют различные цвета. Окраска не является несомненным диагностическим признаком минералов, обладающих различными оттенками. Цвет минерала зависит также от наличия элементов-примесей, входящих в кристаллическую решетку, а также различных пигментов, загрязнений, включений в кристалле-хозяине. Иногда он может быть связан с радиоактивным облучением. У некоторых минералов цвет меняется в зависимости от освещения. Так, александрит при дневном свете зеленый, а при искусственном освещении - фиолетовый.

У некоторых минералов изменяется интенсивность окраски при повороте граней кристалла относительно света. Цвет кристалла кордиерита при вращении меняется от голубого до желтого. Причина такого явления состоит в том, что подобные кристаллы, называемые плеохроичными, по-разному поглощают свет в зависимости от направления луча.

Цвет некоторых минералов может изменяться также при наличии пленки, имеющей другую окраску. Эти минералы в результате окисления покрываются налетом, который, возможно, как-то смягчает действие солнечного или искусственного света. Некоторые драгоценные камни теряют свою окраску, если в течение какого-то периода подвергаются солнечному освещению: изумруд теряет свой глубокий зеленый цвет, аметист и розовый кварц бледнеют.

Многие минералы, содержащие серебро (например, пираргирит и прустит), также чувствительны к солнечным лучам (инсоляции). Апатит под воздействием инсоляции покрывается черной вуалью. Коллекционерам следует предохранять такие минералы от воздействия света. Красный цвет реальгара на солнце переходит в золотисто-желтый. Подобные изменения окраски совершаются в природе очень медленно, но можно искусственно очень быстро изменить цвет минерала, ускорив процессы, происходящие в природе. Например, можно при нагревании получить желтый цитрин из фиолетового аметиста; алмазы, рубины и сапфиры искусственно "улучшают" с помощью радиоактивного облучения и ультрафиолетовых лучей. Горный хрусталь благодаря сильному облучению превращается в дымчатый кварц. Агат, если его серый цвет выглядит не слишком привлекательно, можно перекрасить, опустив в кипящий раствор обыкновенного анилинового красителя для тканей.

ЦВЕТ ПОРОШКА (ЧЕРТА) . Цвет черты определяется при трении о шероховатую поверхность неглазированного фарфора. При этом нужно не забывать, что фарфор имеет твердость 6-6,5 по шкале Мооса, и минералы с большей твердостью оставят только белый порошок растертого фарфора. Всегда можно получить порошок в ступке. Окрашенные минералы всегда дают более светлую черту, неокрашенные и белые - белую. Обычно белая или серая черта наблюдается у минералов, окрашенных искусственно, или с загрязнениями и пигментом. Часто она как бы затуманена, так как в разбавленной окраске ее интенсивность обуславливается концентрацией красящего вещества. Цвет черты минералов с металлическим блеском отличается от их собственного цвета. Желтый пирит дает зеленовато-черную черту; черный гематит - вишнево-красную, черный вольфрамит - коричневую, а касситерит - почти неокрашенную черту. Цветная черта позволяет быстрее и легче определить по ней минерал, чем черта разбавленного цвета или бесцветная.

БЛЕСК . Как и цвет, это эффективный метод определения минерала. Блеск зависит оттого, как свет отражается и преломляется на поверхности кристалла. Различают минералы с металлическим и неметаллическим блеском. Если их различить не удается, можно говорить о полуметаллическом блеске. Непрозрачные минералы металлов (пирит, галенит) обладают большой отражательной способностью и имеют металлический блеск. Для другой важной группы минералов (цинковая обманка, касситерит, рутил и др.) определить блеск затруднительно. Для минералов с неметаллическим блеском различают следующие категории в соответствии с интенсивностью и свойствами блеска:

1. Алмазный блеск, как у алмаза.
2. Стеклянный блеск.
3. Жирный блеск.
4. Тусклый блеск (у минералов с плохой отражательной способностью).

Блеск может быть связан со строением агрегата и направлением господствующей спайности. Минералы, имеющие тонкослоистое сложение, имеют перламутровый блеск.

ПРОЗРАЧНОСТЬ . Прозрачность минерала - качество, которое отличается большой изменчивостью: непрозрачный минерал можно легко отнести к прозрачным. Основная часть бесцветных кристаллов (горный хрусталь, галит, топаз) относятся к этой группе. Прозрачность зависит от строения минерала - некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы этих минералов прозрачны. Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ . Показатель преломления представляет собой важную оптическую константу минерала. Она измеряется с помощью специальной аппаратуры. Когда луч света проникает внутрь анизотропного кристалла, происходит преломление луча. Такое двойное лучепреломление создает впечатление, что существует виртуальный второй объект параллельно изучаемому кристаллу. Подобное явление можно наблюдать через прозрачный кристалл кальцита.

ЛЮМИНЕСЦЕНЦИЯ . Некоторые минералы, такие как шеелит и виллемит, облучаемые ультрафиолетовыми лучами, светятся специфическим светом, что в ряде случаев может некоторое время продолжаться. Флюорит при нагревании в темном месте светится - это явление называется термолюминесценция. При трении некоторых минералов возникает другой тип свечения - триболюминесценция. Эти разные типы люминесценции являются характеристикой, позволяющей легко диагностировать ряд минералов.

ТЕПЛОПРОВОДНОСТЬ . Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатление обусловлено различной теплопроводностью данных минералов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит и тальк кажутся гладкими, а гипс и каолин - сухими и шероховатыми. Растворимые в воде минералы, такие как галит, сильвинит, эпсомит, имеют специфический вкус - соленый, горький, кислый. Некоторые минералы (сера, арсенопирит и флюорит) обладают легко распознаваемым запахом, который возникает сразу при ударе по образцу.

МАГНЕТИЗМ . Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержание железа, можно отличить от других сходных минералов с помощью магнита. Магнетит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например гематит, приобретают магнитные свойства, если их раскалить докрасна.

ХИМИЧЕСКИЕ СВОЙСТВА . Определение минералов на основе их химических свойств требует, помимо специального оборудования, обширных знаний в области аналитической химии.

Есть один простой метод для определения карбонатов, доступный непрофессионалам - действие слабого раствора соляной кислоты (вместо нее можно брать обыкновенный столовый уксус - разбавленную уксусную кислоту, которая есть на кухне). Таким способом можно легко отличить бесцветный образец кальцита от белого гипса - нужно капнуть на образец кислоты. Гипс на это не реагирует, а кальцит "вскипает" при выделении углекислого газа.

Современное человечество только в XVII веке заново открыло для себя кристаллы. Датой рождения кристаллографии - науки, занимающейся изучением кристаллов, принято считать 1669 г.
Хотя научная кристаллография зародилась в XVII веке, теоретические основы о строении кристаллов и способах их исследования были заложены лишь в XIX веке. В XX веке эти открытия нашли практическую реализацию в самых разных областях человеческой жизни. Кристаллы стали широко применяться в самых разных областях науки и техники. Будущее - тоже за ними.
Кристаллы окружают нас со всех сторон. Они - основа физического мира. Из них состоят почти все минералы, в том числе базальт, гранит, известняк и мрамор. Из них состоят все металлы и большинство неметаллов: каучук, кости, волосы, целлюлоза и многое другое.
Мы живем в мире кристаллов. Дома, пароходы, автобусы, самолеты, ракеты, ножи и вилки... - все состоит из них.
Даже в пищу потребляем кристаллические вещества: соль, сахар, не говоря уже о лекарствах в таблетках и порошках, которые мы принимаем во время болезни.
Нет на Земле такого места, где не было бы кристаллов. Да и во Вселенной они широко распространены, так как служат ее материальной основой.
В 1669 году датский врач Н. Стенон сделал важное открытие, он установил, что в кристаллах, образованных одним и тем же веществом, углы между соседними гранями всегда одинаковы, независимо от формы и размеров кристалла.
Это значит, что каждый кристалл имеет присущий только ему угол между гранями.
Это открытие вошло в кристаллографию как закон постоянства углов. Таким образом, если известен угол между гранями, то можно определить вещество кристалла, не прибегая к химическому или физическому анализу. Достаточно только сравнить их с углами известных кристаллов.
Кроме того, тот же Стенон впервые предложил замечательную версию, что кристаллы растут не изнутри, как это наблюдается у растений, а снаружи, путем наложения на внешние плоскости новых частиц.
Кристаллы состоят из атомов, ионов и молекул. Эти частицы располагаются в строго определенном порядке, образуя пространственную решетку. Атомы и ионы удерживаются в них силами притяжения и отталкивания. Они не стоят на месте, а непрерывно колеблются.
Каждый кристалл имеет свою характерную форму, зависящую не только от среды, в которой он вырос, но и от строения пространственной решетки. Форма решетки определяет и свойства самого кристалла. В этом отношении наиболее показателен пример алмаза и графита, пространственные решетки, которых образованы атомами одного и того же элемента - углерода.
Графит - минерал черного цвета, мягкий и пластичный, проводит электрический ток и устойчив к огню. И все потому, что решетка его состоит как бы из слоев, связь между которыми не такая прочная, как между отдельными атомами внутри этого слоя. Такие слои легко сдвинуть один относительно другого при легком нажиме, что мы и наблюдаем, когда пишем карандашом. Он, как мы уже догадались, и является графитом.
А вот алмаз - полная противоположность графиту. Он прозрачен, по прочности превосходит другие кристаллы, но не проводит ток и легко сгорает в струе кислорода. Он почти вдвое тяжелее графита. "Виновата" во всем этом его пространственная решетка. Она трехмерна, а каждый атом в ней крепко связан с четырьмя другими.
Кристаллы бывают твердыми телами и могут быть жидкими, если их молекулы обладают способностью ориентироваться в одном направлении "все вдруг" или группами-слоями или другими способами.
Наконец, "кристаллы" могут быть чисто энергетическими, невидимыми, но наука кристаллография такими "призраками" пока не занимается.
В кристалле грани пересекаются по ребрам, а ребра пересекаются в вершинах. Грани, ребра и вершины - обязательные элементы гранения.
Основные особенности кристаллов - однородность и плоскогранность. Таким образом, если кристаллы имеют плоские грани, то значит, состав их однороден. И наоборот: если вещество кристалла однородно, то оно имеет плоские грани.
Кристаллы могут издавать звуки, например, поющие пески. Это явление привлекает внимание путешественника, оказавшегося среди песчаных барханов пустыни Каракум или других пустынь.
Вдруг неведомо откуда раздаются невнятные звуки пения, но никого нет вокруг, только пески. Они издают звуки, когда при слабом ветре начинает сползать песчаный откос.
Поющие пески есть не только в пустынях. Гармоничные мелодии часто возникают, когда идешь по влажному песку на пляже.
Русский путешественник А. Елисеев оставил свои впечатления о Сахаре:
"...в раскаленном воздухе послышались какие-то чарующие звуки, довольно высокие, певучие, не лишенные гармонии, с сильным металлическим оттенком. Они слышались отовсюду, словно их производили невидимые духи пустыни...
Пустыня была безмолвна, но звуки летели и таяли в раскаленной атмосфере, возникая откуда-то сверху и пропадая будто бы в земле... То веселые, то жалостливые, то резкие и крикливые, то нежные и мелодические, они казались говором живых существ, но не звуками мертвой пустыни...
Никакие нимфы древних не могли придумать чего-либо более поразительного и чудесного, чем эти таинственные песни песков".
Всех, кто слышал песни песков, удивляет это явление, и многие пытались объяснить его. Например, древние египтяне считали, что такие звуки являются порождением духов пустыни, и были правы.
Современные ученные считают, что причина возникновения звуков может скрываться в самой структуре песчинки. В ней, как известно, много кварца и других кремнеземов.
Кварц - это окись кремния, наиболее распространенная в земной коре. Его кристаллы обладают рядом выдающихся свойств. Они богаты простыми, то есть замкнутыми, закрытыми формами. Здесь можно найти пирамиды, призмы, ромбоэдры, - более пятисот простых форм. Для кварца характерны образования двойников - симметричных сростков кристаллов.
Но не только многообразием внешних форм удивляет кварц. Его кристалл не имеет центра симметрии, а это верный признак, что он обладает пьезоэлектрическими свойствами.
Поэтому, если сжать кристалл, то на его гранях, перпендикулярных направлению сжатия, возникают разноименные электрические заряды: положительный - на одной грани, отрицательный - на другой.
Так механическая энергия с помощью кристалла кварца превращается в электрическую энергию. Если же снять механическую нагрузку с кристалла и начать его растягивать, то полярность зарядов на гранях меняется на противоположные заряды. И это происходит в кристалле кварца, который сам по себе является изолятором!
Это явление в кварцевых кристаллах было открыто в 1817 году французским кристаллографом Р. Гаюи, и повторно - в 1880 г. французскими учеными братьями Жаном и Пьером Кюри и названо пьезоэлектричеством. Позднее они же обнаружили и обратимость этого эффекта.
Оказалось, что кристалл кварца мог сжиматься или растягиваться, если на его гранях создаются разноименные электрические заряды. При этом электрическая энергия превращалась в механическую энергию.
Именно это свойство кристалла дает основание полагать, что пение песков пустыни связано с пребыванием духов. Так как духи пустыни являются демоническими сущностями, которые представляют собой хаотическое движение электронов.
В демонических сущностях отсутствует ядро и магнетизм. Они представляют собой пустоту, которая окружена, хаотично движущими электронами. Таким образом, демонические сущности являются носителями электрического заряда, который вызывает напряжение на поверхности молекул кристаллов.
В результате этого воздействия кристаллы песка сжимаются и разжимаются, вызывая колебание воздуха, которое проявляется в виде звуков.
Пение песков сильно воздействует на психику человека, вызывая инстинктивный страх. Причину этого страха можно объяснить тем, что человеческая душа в пении песков улавливает "дыхание" смерти, носителем которой является демоническая сущность.
Человек, животное и растение, как живые организмы, не могут подобно демонической сущности переносить напряжение и влиять на кристаллы, не могут вызывать пение песков. Так как атомарная система живых клеток органических тел производит вибрации другой частоты и электромагнитную индукцию, что делает систему организма закрытой в смысле электрического воздействия. То есть электрическая энергия организма захвачена собственным магнитным полем, которое ею и управляет.
И только в том случае, когда духовность человека падает, что снижает потенциал магнитного поля его организма, может образовываться избыток электрической энергии и дополнительное напряжение. Именно это напряжение демоническая сила улавливает и переносит. Этот избыток электричества негативно влияет в первую очередь на кристаллические структуры самого человеческого организма, а затем на кристаллические тела, которые его окружают. Например, на ювелирные украшения, которые носит человек. Поэтому в древности по состоянию камней-амулетов прогнозировали состояние здоровья человека и даже его будущее. Обращали внимание на молоко, которое чутко реагирует на присутствие в доме нечистой силы.
В результате исследований было установлено, что кварц в виде пластинки, вырезанной из тела кристалла, обладает такой большой упругостью, что может колебаться с очень высокой частотой, последовательно сжимаясь и растягиваясь при смене полярности электрического поля.
Кварц может вибрировать в широком диапазоне частот, создавая акустические и электрические волны, то есть петь. Когда с бархана сползает песчаная лавина или обрушивается песчаный массив, нижележащие слои песка испытывают переменное давление от движущегося слоя. Они сжимаются под давлением и "распрямляются" после уменьшения давления. Кварцевые кристаллы, имеющиеся в песчинках, начинают колебаться, вибрировать, генерируя акустические волны. Аналогичные процессы возникают и при ходьбе по мокрому песку.
Механические колебания кристалликов кварца в песчинках приводят к образованию электрических зарядов на их гранях, полярность которых меняется синхронно с механическими колебаниями кристаллов. Возникают не только акустические волны, но и переменное электрическое поле определенного спектра частот.
Каждая песчинка, каждый кристаллик поет свою песню на своей частоте. Их голоса складываются. И вот уже звучит многоголосое пение, достаточно громко, диапазон частот широк. Его-то и слышит человеческое ухо. Но только низкие частоты. Высокие частоты наше ухо не воспринимает. Когда движение песка замирает, возбужденные механические и электрические колебания кристаллов кварца в песчинках затухают, звучание прекращается.
В 1957 г. советский ученый К. Баранский установил, что акустические волны можно возбудить непосредственно на поверхности кристалла, что еще выше расширяло диапазон генерируемых частот. Затем американские ученые увеличили потолок частот еще на порядок.
Если поют пески, когда подвергаются механическим и электрическим воздействиям, то по аналогичной причине поет и сама Земля. Пульсирующее огненное сердце планеты, влияние других планет и Солнца вызывают подвижку и вибрацию пород земной коры, заставляя звучать Землю. Ее песня, не воспринимаемая человеческим ухом, далеко разносится в космосе.
Земная кора находится в постоянном напряжении. То тут, то там происходят землетрясения и вулканические извержения, освобождающие опасные зоны от перегрузок на них демонических сущностей - бездуховных пустот.
Количество землетрясений на Земле достигает до ста тысяч в год. Из общего числа землетрясений сильных землетрясений происходит до тысячи в год.
Из очагов деформации земной коры колебания передаются на большие расстояния. Скорость распространения волн очень высока. В гранитных породах для продольных волн она составляет более 5000 метров в секунду, для поперечных - около 2509 метров в секунду.
На своем пути земные волны то сжимают породы, то растягивают их, вызывая образование мощных электрических зарядов разной полярности. Особенно они велики в эпицентре сжатия или растягивания, где земные породы испытывают очень сильные, вплоть до разрыва, деформации.
Электрические разряды в виде сильнейших подземных молний стремительно распространяются по зонам наименьшего сопротивления и часто прорываются из глубин на поверхность Земли, оставляя оплавленные твердые породы или странные круглые отверстия.
В том, что Земля звучит, нет ничего странного. Ее твердые породы, базальта, граниты, песчаники и другие имеют кристаллическую структуру. В них много кварцевых образований. При деформации кристаллов возникают не только акустические и электрические волны, но протекают попутно и другие физические и химические процессы.
Грозный рокот глубинных бурь "слышат" многие животные, птицы, насекомые. Они даже могут быть "оповещателями", приближающегося подземного удара. И только человек, как правило, оказывается застигнутым врасплох. Так как перестал воспринимать себя частью природы и следить за происходящими процессами в природе.
Кроме "пения" кристаллы вибрируют в определенном диапазоне светового спектра, поэтому приобретают свой цвет, например, ювелирные камни. Камни прозрачные и с сильным блеском способны пропускать и модифицировать лучистую энергию. Цветность минералов связывается с включением в их кристаллическую решетку ионов металлов, легко меняющих свою валентность, способных при минимальной подаче энергии отдавать свои электроны.
Часть этих электронов "бродит" среди атомов кристаллической решетки, взаимодействуя с ними, обмениваясь с ними энергией. В результате в кристалле возникают и непрерывно меняют свой узор местные нарушения кристаллической решетки. Таким образом, кристалл интенсивно живет своей "внутренней жизнью", внешние проявления которой и составляют наборы "магических" свойств камней-амулетов.
К таким металлам, примеси соединений, которых заметно изменяют энергетический силуэт кристалла, относятся железо, медь, марганец, хром, редкоземельные элементы.

Похожие статьи