Tg равен отношению. Что такое синус и косинус в тригонометрии

14.10.2019

ЕГЭ на 4? А не лопнешь от счастья?

Вопрос, как говорится, интересный... Можно, можно сдать на 4! И при этом не лопнуть... Главное условие - заниматься регулярно. Здесь - основная подготовка к ЕГЭ по математике. Со всеми секретами и тайнами ЕГЭ, о которых Вы не прочитаете в учебниках... Изучайте этот раздел, решайте больше заданий из различных источников - и всё получится! Предполагается, что базовый раздел "С тебя и тройки хватит!" у вас затруднений не вызывает. Но если вдруг... По ссылочкам-то ходите, не ленитесь!

И начнём мы с великой и ужасной темы.

Тригонометрия

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта тема доставляет массу проблем ученикам. Считается одной из самых суровых. Что такое синус и косинус? Что такое тангенс и котангенс? Что такое числовая окружность? Стоит задать эти безобидные вопросы, как человек бледнеет и пытается увести разговор в сторону… А зря. Это простые понятия. И ничем эта тема не сложнее других. Просто нужно с самого начала чётко уяснить ответы на эти самые вопросы. Это очень важно. Если уяснили – тригонометрия вам понравится. Итак,

Что такое синус и косинус? Что такое тангенс и котангенс?

Начнём с глубокой древности. Не волнуйтесь, все 20 веков тригонометрии мы пройдём минут за 15. И, незаметно для себя, повторим кусочек геометрии из 8 класса.

Нарисуем прямоугольный треугольник со сторонами а, в, с и углом х . Вот такой.

Напомню, что стороны, которые образуют прямой угол, называются катетами. а и в – катеты. Их два. Оставшаяся сторона называется гипотенузой. с – гипотенуза.

Треугольник и треугольник, подумаешь! Что с ним делать? А вот древние люди знали, что делать! Повторим их действия. Измерим сторону в . На рисунке специально клеточки нарисованы, как в заданиях ЕГЭ бывает. Сторона в равна четырём клеточкам. Ладно. Измерим сторону а. Три клеточки.

А теперь поделим длину стороны а на длину стороны в . Или, как ещё говорят, возьмём отношение а к в . а/в = 3/4.

Можно наоборот, поделить в на а. Получим 4/3. Можно в поделить на с. Гипотенузу с по клеточкам не посчитать, но она равна 5. Получим в/с = 4/5. Короче, можно делить длины сторон друг на друга и получать какие-то числа.

Ну и что? Какой смысл в этом интересном занятии? Пока никакого. Бестолковое занятие, прямо скажем.)

А теперь сделаем вот что. Увеличим треугольник. Продлим стороны в и с , но так, чтобы треугольник остался прямоугольным. Угол х , естественно, не меняется. Чтобы это увидеть, наведите курсор мышки на картинку, или коснитесь её (если у вас - планшет). Стороны а, в и с превратятся в m, n, k , и, понятное дело, длины сторон изменятся.

А вот их отношения – нет!

Отношение а/в было: а/в = 3/4, стало m/n = 6/8 = 3/4. Отношения других соответствующих сторон также не изменятся . Можно как угодно менять длины сторон в прямоугольном треугольнике, увеличивать, уменьшать, не меняя угла х отношения соответствующих сторон не изменятся . Можно проверить, а можно поверить древним людям на слово.

А вот это уже очень важно! Отношения сторон в прямоугольном треугольнике никак не зависят от длин сторон (при одном и том же угле). Это настолько важно, что отношения сторон заслужили свои специальные названия. Свои имена, так сказать.) Знакомьтесь.

Что такое синус угла х ? Это отношение противолежащего катета к гипотенузе:

sinx = а/с

Что такое косинус угла х ? Это отношение прилежащего катета к гипотенузе:

с osx = в/с

Что такое тангенс угла х ? Это отношение противолежащего катета к прилежащему:

tgx = а/в

Что такое котангенс угла х ? Это отношение прилежащего катета к противолежащему:

ctgx = в/а

Всё очень просто. Синус, косинус, тангенс и котангенс – это некоторые числа. Безразмерные. Просто числа. Для каждого угла – свои.

Зачем я так занудно всё повторяю? Затем, что это надо запомнить . Железно запомнить. Запоминание можно облегчить. Фраза «Начнём издалека…» знакома? Вот и начинайте издалека.

Синус угла – это отношение дальнего от угла катета к гипотенузе. Косинус – отношение ближнего к гипотенузе.

Тангенс угла – это отношение дальнего от угла катета к ближнему. Котангенс – наоборот.

Уже проще, правда?

Ну а если запомнить, что в тангенсе и котангенсе сидят только катеты, а в синусе и косинусе гипотенуза появляется, то всё станет совсем просто.

Всю эту славную семейку – синус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями .


А теперь вопрос на соображение.

Почему мы говорим синус, косинус, тангенс и котангенс угла? Речь-то идёт об отношениях сторон, вроде... При чём здесь угол?

Смотрим на вторую картинку. Точно такую же, как и первая.

Наведите мышку на картинку. Я изменил угол х . Увеличил его с х до Х. Все отношения поменялись! Отношение а/в было 3/4, а соответствующее отношение t/в стало 6/4.

И все остальные отношения стали другими!

Стало быть, отношения сторон никак не зависят от их длин (при одном угле х), но резко зависят от этого самого угла! И только от него. Поэтому термины синус, косинус, тангенс и котангенс относятся к углу. Угол здесь - главный.

Надо железно уяснить, что угол неразрывно связан со своими тригонометрическими функциями. У каждого угла есть свой синус и косинус. И почти у каждого - свой тангенс и котангенс. Это важно. Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны ! И наоборот. Дан синус, или любая другая тригонометрическая функция – значит, мы знаем угол.

Существуют специальные таблицы, где для каждого угла расписаны его тригонометрические функции. Таблицы Брадиса называются. Они очень давно составлены. Когда ещё не было ни калькуляторов, ни компьютеров...

Конечно, тригонометрические функции всех углов запомнить нельзя. Вы обязаны знать их только для нескольких углов, об этом дальше будет. Но заклинание «знаю угол – значит, знаю его тригонометрические функции» - работает всегда!

Вот мы и повторили кусочек геометрии из 8-го класса. Оно нам надо для ЕГЭ? Надо. Вот вам типичная задачка из ЕГЭ. Для решения которой достаточно 8-го класса. Дана картинка:

Всё. Больше никаких данных нет. Надо найти длину катета ВС.

Клеточки слабо помогают, треугольник как-то неправильно расположен.... Специально, поди… Из информации есть длина гипотенузы. 8 клеток. Ещё зачем-то дан угол.

Вот здесь надо сразу вспоминать про тригонометрию. Есть угол, значит, мы знаем все его тригонометрические функции. Какую функцию из четырёх в дело пустить? А посмотрим-ка, что нам известно? Нам известны гипотенуза, угол, а найти надо прилежащий к этому углу катет! Ясно дело, косинус нужно в дело запускать! Вот и запускаем. Просто пишем, по определению косинуса (отношение прилежащего катета к гипотенузе):

cosC = ВС/8

Угол С у нас 60 градусов, его косинус равен 1/2. Это знать надо, безо всяких таблиц! Стало быть:

1/2 = ВС/8

Элементарное линейное уравнение. Неизвестное – ВС . Кто подзабыл, как решать уравнения , прогуляйтесь по ссылке, остальные решают:

ВС = 4

Когда древние люди поняли, что у каждого угла имеется свой комплект тригонометрических функций, у них возник резонный вопрос. А не связаны ли как-нибудь синус, косинус, тангенс и котангенс между собой? Так, чтобы зная одну функцию угла, можно было найти остальные? Не вычисляя сам угол?

Вот такие они были неугомонные...)

Связь между тригонометрическими функциями одного угла.

Конечно, синус, косинус, тангенс и котангенс одного и того же угла связаны между собой. Всякая связь между выражениями задаётся в математике формулами. В тригонометрии формул - колоссальное количество. Но здесь мы рассмотрим самые основные. Эти формулы так и называются: основные тригонометрические тождества. Вот они:

Эти формулы надо знать железно. Без них вообще в тригонометрии делать нечего. Из этих основных тождеств вытекают ещё три вспомогательных тождества:

Сразу предупреждаю, что три последние формулы быстро выпадают из памяти. Почему-то.) Можно, конечно, вывести эти формулы из первых трёх. Но, в трудную минуту... Сами понимаете.)

В стандартных заданиях, типа тех, что приведены ниже, есть способ обойтись без этих незапоминающихся формул. И резко уменьшить ошибки по забывчивости, да и в вычислениях тоже. Этот практический приём - в Разделе 555, урок "Связь между тригонометрическими функциями одного угла."

В каких заданиях и как используются основные тригонометрические тождества? Самое популярное задание - найти какую-нибудь функцию угла, если дана другая. В ЕГЭ такое задание из года в год присутствует.) Например:

Найти значение sinx, если х - острый угол, а cosx=0,8.

Задачка почти элементарная. Ищем формулу, где имеются синус и косинус. Вот она эта формула:

sin 2 x + cos 2 x = 1

Подставляем сюда известную величину, а именно, 0,8 вместо косинуса:

sin 2 x + 0,8 2 = 1

Ну и считаем, как обычно:

sin 2 x + 0,64 = 1

sin 2 x = 1 - 0,64

Вот, практически и всё. Мы вычислили квадрат синуса, осталось извлечь квадратный корень и ответ готов! Корень из 0,36 будет 0,6.

Задачка почти элементарная. Но словечко "почти" здесь не зря стоит... Дело в том, что ответ sinx= - 0,6 тоже подходит... (-0,6) 2 тоже 0,36 будет.

Два разных ответа получаются. А нужен один. Второй - неправильный. Как быть!? Да как обычно.) Внимательно прочитать задание. Там зачем-то написано: ...если х - острый угол... А в заданиях каждое слово смысл имеет, да... Эта фраза - и есть дополнительная информация к решению.

Острый угол - это угол меньше 90°. А у таких углов все тригонометрические функции - и синус, и косинус, и тангенс с котангенсом - положительные. Т.е. отрицательный ответ мы здесь просто отбрасываем. Имеем право.

Собственно, восьмиклассникам такие тонкости не нужны. Они работают только с прямоугольными треугольниками, где углы могут быть только острые. И не знают, счастливые, что бывают и отрицательные углы, и углы в 1000°... И у всех этих кошмарных углов есть свои тригонометрические функции и с плюсом, и с минусом...

А вот старшеклассникам без учёта знака - никак. Многие знания умножают печали, да...) И для правильного решения в задании обязательно присутствует дополнительная информация (если она необходима). Например, она может быть дана такой записью:

Или как-нибудь иначе. В примерах ниже увидите.) Для решения таких примеров нужно знать, в какую четверть попадает заданный угол х и какой знак имеет нужная тригонометрическая функция в этой четверти.

Эти азы тригонометрии рассмотрены в уроках что такое тригонометрический круг, отсчёт углов на этом круге, радианная мера угла. Иногда требуется знать и таблицу синусов косинусов тангенсов и котангенсов.

Итак, отметим самое главное:

Практические советы:

1. Запомните определения синуса, косинуса, тангенса и котангенса. Очень пригодится.

2. Чётко усваиваем: синус, косинус, тангенс и котангенс накрепко связаны с углами. Знаем одно - значит, знаем и другое.

3. Чётко усваиваем: синус, косинус, тангенс и котангенс одного угла связаны между собой основными тригонометрическими тождествами. Знаем одну функцию - значит, можем (при наличии необходимой дополнительной информации) вычислить все остальные.

А теперь порешаем, как водится. Сначала задания в объёме 8-го класса. Но и старшеклассникам тоже можно...)

1. Вычислить значение tgА, если ctgА = 0,4.

2. β - угол в прямоугольном треугольнике. Найти значение tgβ, если sinβ = 12/13.

3. Определить синус острого угла х, если tgх = 4/3.

4. Найти значение выражения:

6sin 2 5° - 3 + 6cos 2 5°

5. Найти значение выражения:

(1-cosx)(1+cosx), если sinх = 0,3

Ответы (через точку с запятой, в беспорядке):

0,09; 3; 0,8; 2,4; 2,5

Получилось? Отлично! Восьмиклассники могут уже пройти за своими пятёрками.)

Не всё получилось? Задания 2 и 3 как-то не очень...? Не беда! Есть один красивый приём для подобных заданий. Всё решается, практически, вообще без формул! Ну и, следовательно, без ошибок. Этот приём в уроке: "Связь между тригонометрическими функциями одного угла" в Разделе 555 описан. Там же разобраны и все остальные задания.

Это были задачки типа ЕГЭ, но в урезанном варианте. ЕГЭ - лайт). А сейчас почти такие же задания, но в полноценном егэшном виде. Для обременённых знаниями старшеклассников.)

6. Найти значение tgβ, если sinβ = 12/13, а

7. Определить sinх, если tgх = 4/3, а х принадлежит интервалу (- 540°; - 450°).

8. Найти значение выражения sinβ·cosβ, если ctgβ = 1.

Ответы (в беспорядке):

0,8; 0,5; -2,4.

Здесь в задаче 6 угол задан как-то не очень однозначно... А в задаче 8 и вовсе не задан! Это специально). Дополнительная информация не только из задания берётся, но и из головы.) Зато уж если решили - одно верное задание гарантировано!

А если не решили? Гм... Ну, тут Раздел 555 поможет. Там решения всех этих заданий подробно расписаны, трудно не разобраться.

В этом уроке дано очень ограниченное понятие тригонометрических функций. В пределах 8-го класса. А у старших остаются вопросы...

Например, если угол х (смотрите вторую картинку на этой странице) - сделать тупым!? Треугольник-то вообще развалится! И как быть? Ни катета не будет, ни гипотенузы... Пропал синус...

Если бы древние люди не нашли выход из этого положения, не было бы у нас сейчас ни мобильников, ни TV, ни электричества. Да-да! Теоретическая основа всех этих вещей без тригонометрических функций - ноль без палочки. Но древние люди не подвели. Как они выкрутились - в следующем уроке.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

Понятия в тригонометрии

Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

Углы треугольника

В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

Единичная окружность

Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

Вычисления и основные формулы


Значения тригонометрических функций

Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

Простейшие тригонометрические тождества

Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin х = -1, х = -π/2 + 2πk.
  4. sin х = а, |a| > 1, нет решений.
  5. sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.

Тождества со значением cos х = а, где k — любое целое число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, |a| > 1, нет решений.
  5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

Тождества со значением tg х = а, где k — любое целое число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тождества со значением ctg х = а, где k — любое целое число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формулы приведения

Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

Формулы приведения функций для синуса угла выглядят таким образом:

  • sin(900 — α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 — α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 — α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 — α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса угла:

  • cos(900 — α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 — α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 — α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 — α) = cos α;
  • cos(3600 + α) = cos α.

Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

  • с sin на cos;
  • с cos на sin;
  • с tg на ctg;
  • с ctg на tg.

Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

Формулы сложения

Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

Формулы имеют такой вид:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Эти формулы справедливы для любых величин углов α и β.

Формулы двойного и тройного угла

Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 — 2sin^2 α.
  3. tg2α = 2tgα / (1 — tg^2 α).
  4. sin3α = 3sinα — 4sin^3 α.
  5. cos3α = 4cos^3 α — 3cosα.
  6. tg3α = (3tgα — tg^3 α) / (1-tg^2 α).

Переход от суммы к произведению

Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Переход от произведения к сумме

Эти формулы следуют из тождеств перехода суммы в произведение:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Формулы понижения степени

В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

  • sin^2 α = (1 — cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα — sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 — 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Универсальная подстановка

Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
  • cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
  • tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
  • ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.

Частные случаи

Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

Частные для синуса:

Значение sin x Значение x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk или 5π/6 + 2πk
-1/2 -π/6 + 2πk или -5π/6 + 2πk
√2/2 π/4 + 2πk или 3π/4 + 2πk
-√2/2 -π/4 + 2πk или -3π/4 + 2πk
√3/2 π/3 + 2πk или 2π/3 + 2πk
-√3/2 -π/3 + 2πk или -2π/3 + 2πk

Частные для косинуса:

Значение cos x Значение х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Частные для тангенса:

Значение tg x Значение х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Частные для котангенса:

Значение ctg x Значение x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теоремы

Теорема синусов

Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

Теорема косинусов

Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

Теорема тангенсов

Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

Теорема котангенсов

Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладное применение

Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы :

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Я думаю, вы заслуживаете больше, чем это. Вот мой ключ к тригонометрии:

  • Нарисуйте купол, стену и потолок
  • Тригонометрические функции - это не что иное, как процентное отношение этих трех форм.

Метафора для синуса и косинуса: купол

Вместо того, чтобы просто смотреть на сами треугольники, представьте их в действии, найдя какой-то частный пример из жизни.

Представьте, будто вы находитесь посередине купола и хотите подвесить экран для кинопроектора. Вы указываете пальцем на купол под неким углом “x”, и к этой точке должен быть подвешен экран.

Угол, на который вы указываете, определяет:

  • синус(x) = sin(x) = высота экрана (от пола до точки крепления на куполе)
  • косинус(x) = cos(x) = расстояние от вас до экрана (по полу)
  • гипотенуза, расстояние от вас к верхушке экрана, всегда одинаковое, равно радиусу купола

Хотите, чтобы экран был максимально большой? Повесьте его прямо над собой.

Хотите, чтобы экран висел на максимально большом расстоянии от вас? Вешайте его прямо перпендикулярно. У экрана будет нулевая высота в этом положении, и он будет висеть наиболее отдаленно, как вы и просили.

Высота и расстояние от экрана обратно пропорциональны: чем ближе висит экран, тем его высота будет больше.

Синус и косинус - это проценты

Никто в годы моей учебы, увы, не объяснил мне, что тригонометрические функции синус и косинус - это не что иное, как проценты. Их значения варьируются от +100% до 0 и до -100%, или от положительного максимума до нуля и до отрицательного максимума.

Скажем, я заплатил налог 14 рублей. Вы не знаете, насколько это много. Но если сказать, что я заплатил 95% в качестве налога, вы поймете, что меня просто ободрали, как липку.

Абсолютная высота ни о чем не говорит. Но если значение синуса составляет 0.95, то я понимаю, что телевизор висит почти на верхушке вашего купола. Очень скоро он достигнет максимальной высоты по центру купола, а затем начнет снова снижаться.

Как мы можем вычислить этот процент? Очень просто: поделите текущее значение высоты экрана на максимально возможное (радиус купола, который также называют гипотенузой).

Вот почему нам говорят, что “косинус = противоположный катет / гипотенуза”. Это всё для того, чтобы получить процент! Лучше всего определить синус как “процент текущей высоты от максимально возможной”. (Синус становится отрицательным, если ваш угол указывает “под землю”. Косинус становится отрицательным, если угол указывает на точку купола позади вас).

Давайте упростим расчеты, предположив, что мы находимся в центре единичной окружности (радиус = 1). Мы можем пропустить деление и просто взять синус, равный высоте.

Каждая окружность, по сути, является единичной, увеличенной или уменьшенной в масштабе до нужного размера. Поэтому определите связи наединичной окружности и примените результаты к вашему конкретному размеру окружности.

Поэкспериментируйте: возьмите любой угол и посмотрите, какое процентное соотношение высоты к ширине он отображает:

График роста значения синуса - не просто прямая линия. Первые 45 градусов покрывают 70% высоты, а последние 10 градусов (с 80°до 90°) покрывают всего 2%.

Так вам станет понятнее: если идти по кругу, при 0° вы подымаетесь почти вертикально, но по мере подхода к верхушке купола, высота изменяется всё меньше и меньше.

Тангенс и секанс. Стена

Однажды сосед построил стену прямо впритык к вашему куполу. Плакали ваш вид из окна и хорошая цена для перепродажи!

Но можно ли как-то выиграть в этой ситуации?

Конечно, да. А что, если мы повесим киноэкран прямо на соседскую стену? Вы нацеливаетесь на угол (х) и получаете:

  • тангенс(x) = tan(x) = высота экрана на стене
  • расстояние от вас до стены: 1 (это радиус вашего купола, стена никуда не двигается от вас, верно?)
  • секанс(x) = sec(x) = “длина лестницы” от вас, стоящего в центре купола, до верхушки подвешенного экрана

Давайте уточним пару моментов касательно тангенса, или высоты экрана.

  • он начинается на 0, и может подниматься бесконечно высоко. Вы можете растягивать экран все выше и выше на стене, чтобы получить просто бесконечное полотно для просмотра любимого фильма! (На такой огромный, конечно, придется прилично потратиться).
  • тангенс - это просто увеличенная версия синуса! И пока прирост синуса замедляется по мере продвижения к верхушке купола, тангенс продолжает расти!

Секансу тоже есть, чем похвастаться:

  • cеканс начинается с 1 (лестница лежит на полу, от вас к стене) и начинает подниматься оттуда
  • cеканс всегда длиннее тангенса. Наклоненная лестница, с помощью которой вы вешаете свой экран, должна быть длиннее, чем сам экран, верно? (При нереальных размерах, когда экран оооочень длинный, и лестницу нужно ставить практически вертикально, их размеры почти одинаковы. Но даже тогда секанс будет чуточку длиннее).

Помните, значения являются процентами . Если вы решили повесить экран под углом 50 градусов, tan(50)=1.19. Ваш экран на 19% больше, чем расстояние к стене (радиус купола).

(Введите x=0 и проверьте свою интуицию - tan(0) = 0, а sec(0) = 1.)

Котангенс и косеканс. Потолок

Невероятно, но ваш сосед теперь решил возвести перекрытие над вашим куполом. (Что с ним такое? Он, видимо, не хочет, чтобы вы за ним подглядывали, пока он разгуливает по двору голышом…)

Ну что ж, настало время построить выход на крышу и поговорить с соседом. Вы выбираете угол наклона, и начинаете строительство:

  • вертикальное расстояние между выходом на крыше и полом всегда равно 1 (радиусу купола)
  • котангенс(x) = cot(x) = расстояние между верхушкой купола и местом выхода
  • косеканс(x) = csc(x) = длина вашего пути на крышу

Тангенс и секанс описывает стену, а КОтангенс и КОсеканс описывает перекрытие.

Наши интуитивные умозаключения в этот раз похожи на предыдущие:

  • eсли вы возьмете угол, равный 0°, ваш выход на крышу будет длиться бесконечно, так как никогда не достигнет перекрытия. Проблемка.
  • cамый короткий “трап” на крышу получится, если строить его под углом 90 градусов к полу. Котангенс будет равен 0 (мы вообще не передвигаемся вдоль крыши, выходим строго перпендикулярно), а косеканс равен 1 (“длина трапа” будет минимальной).

Визуализируйте связи

Если все три случая нарисовать в комбинации купол-стена-перекрытие, получится следующее:

Ну надо же, это всё один тот же треугольник, увеличенный в размере, чтобы достать до стены и до перекрытия. У нас есть вертикальные стороны (синус, тангенс), горизонтальные стороны (косинус, котангенс) и “гипотенузы” (секанс, косеканс). (По стрелкам вы можете видеть, докуда доходит каждый элемент. Косеканс - это полное расстояние от вас до крыши).

Немного волшебства. Все треугольники объединяют одни и те же равенства:

Из теоремы Пифагора (a 2 + b 2 = c 2) мы видим, как связаны стороны каждого треугольника. Кроме того, соотношения типа “высота к ширине” должны быть также одинаковыми для всех треугольников. (Просто отступите от самого большого треугольника к меньшему. Да, размер изменился, но пропорции сторон останутся прежними).

Зная, какая сторона в каждом треугольнике равна 1 (радиусу купола), мы легко вычислим, что “sin/cos = tan/1”.

Я всегда пытался запомнить эти факты путем простой визуализации. На картинке ты четко видишь эти зависимости, и понимаешь, откуда они берутся. Этот прием гораздо лучше заучивания сухих формул.

Не стоит забывать о других углах

Тсс… Не нужно зацикливаться на одном графике, думая, что тангенс всегда меньше 1. Если увеличить угол, можно дойти до потолка, не достигнув стены:

Связи Пифагора всегда работают, но относительные размеры могут быть разными.

(Вы, наверное, заметили, что соотношение синус и косинус всегда самые маленькие, потому что они заключены внутри купола).

Подытожим: что нам нужно запомнить?

Для большинства из нас, я бы сказал, что этого будет достаточно:

  • тригонометрия поясняет анатомию математических объектов, таких как окружности и повторяющиеся интервалы
  • аналогия купол/стена/крыша показывает связь между различными тригонометрическими функциями
  • результатом тригонометрических функций являются проценты, которые мы применяем к нашему сценарию.

Вам не нужно запоминать формулы, типа 1 2 + cot 2 = csc 2 . Они годятся разве что для глупых тестов, в которых знание факта выдаётся за его понимание. Потратьте минутку, чтобы нарисовать полуокружность в виде купола, стену и крышу, подпишите элементы, и все формулы сами напросятся вам на бумагу.

Приложение: обратные функции

Любая тригонометрическая функция использует в качестве входного параметра угол и возвращает результат в виде процента. sin(30) = 0.5. Это означает, что угол в 30 градусов занимает 50% от максимальной высоты.

Обратная тригонометрическая функция записывается как sin -1 или arcsin (“арксинус”). Также часто пишут asin в различных языках программирования.

Если наша высота составляет 25% от высоты купола, каков наш угол?

В нашей табличке пропорций можно найти соотношение, где секанс делится на 1. Например, секанс на 1 (гипотенуза к горизонтали) будет равно 1 поделить на косинус:

Допустим, наш секанс равен 3.5, т.е. 350% от радиуса единичной окружности. Какому углу наклона к стене это значение соответствует?

Приложение: Несколько примеров

Пример: Найти синус угла x.

Скучная задачка. Давайте усложним банальное “найти синус” до “Какая высота в процентах от максимума (гипотенузы)?”.

Во-первых, заметьте, что треугольник повернут. В этом нет ничего страшного. Всё также у треугольника есть высота, она на рисунке указана зеленым.

А чему равна гипотенуза? По теореме Пифагора, мы знаем, что:

3 2 + 4 2 = гипотенуза 2 25 = гипотенуза 2 5 = гипотенуза

Хорошо! Синус - это процент высоты от самой длинной стороны треугольника, или гипотенузы. В нашем примере синус равен 3/5 или 0.60.

Конечно, мы можем пойти несколькими путями. Теперь мы знаем, что синус равен 0.60, и мы можем просто найти арксинус:

Asin(0.6)=36.9

А вот еще один подход. Заметьте, что треугольник стоит “лицом к лицу к стене”, так что вместо синуса мы можем использовать тангенс. Высота равна 3, расстояние стене - 4, так что тангенс равен ¾ или 75%. Мы можем использовать арктангенс, чтобы из процентного значения вернуться обратно в угол:

Tan = 3/4 = 0.75 atan(0.75) = 36.9 Пример: А доплывете ли вы до берега?

Вы в лодке, и у вас есть достаточно топлива, чтобы проплыть 2 км. Сейчас вы находитесь в 0.25 км от берега. Под каким максимальным углом к берегу вы можете доплыть до него так, чтобы хватило топлива? Дополнение к условию задачи: у нас в наличии есть только таблица значений арккосинусов.

Что мы имеем? Береговую линию можно представить как “стену” в нашем знаменитом треугольнике, а “длину лестницы”, приставленной к стене - максимально возможным преодолимым расстоянием на лодке к берегу (2 км). Вырисовывается секанс.

Сначала, нужно перейти на проценты. У нас есть 2 / 0.25 = 8, то есть мы можем проплыть расстояние, в 8 раз больше прямой дистанции до берега (или до стены).

Возникает вопрос “Чему равен секанс 8?”. Но мы не можем дать на него ответ, так как у нас есть только арккосинусы.

Мы используем наши ранее выведенные зависимости, чтобы привязать секанс к косинусу: “sec/1 = 1/cos”

Секанс 8 равен косинусу ⅛. Угол, косинус которого ⅛ равен acos(1/8) = 82.8. И это самый большой угол, который мы можем себе позволить на лодке с указанным количеством горючего.

Неплохо, правда? Без аналогии с куполом-стеной-потолком, я бы запутался в куче формул и вычислений. Визуализация задачи сильно упрощает поиск решения, к тому же, интересно увидеть, какая тригонометрическая функция в итоге поможет.

При решении каждой задачи думайте следующим образом: меня интересует купол (sin/cos), стена (tan/sec) или потолок (cot/csc)?

И тригонометрия станет куда приятнее. Легких вам вычислений!

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.

Похожие статьи