С 22 логарифмические уравнения. Решение логарифмичеких уравнений. Полное руководство (2019)

14.10.2019


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).

На данном уроке мы повторим основные теоретические факты о логарифмах и рассмотрим решение простейших логарифмических уравнений.

Напомним центральное определение - определение логарифма. Оно связано с решением показательного уравнения . Данное уравнение имеет единственный корень, его называют логарифмом b по основанию а:

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Напомним основное логарифмическое тождество .

Выражение (выражение 1) является корнем уравнения (выражение 2). Подставим значение х из выражения 1 вместо х в выражение 2 и получим основное логарифмическое тождество:

Итак мы видим, что каждому значению ставится в соответствие значение . Обозначим b за х (), с за у, и таким образом получаем логарифмическую функцию:

Например:

Вспомним основные свойства логарифмической функции.

Еще раз обратим внимание, здесь , т. к. под логарифмом может стоять строго положительное выражение, как основание логарифма.

Рис. 1. График логарифмической функции при различных основаниях

График функции при изображен черным цветом. Рис. 1. Если аргумент возрастает от нуля до бесконечности, функция возрастает от минус до плюс бесконечности.

График функции при изображен красным цветом. Рис. 1.

Свойства данной функции:

Область определения: ;

Область значений: ;

Функция монотонна на всей своей области определения. При монотонно (строго) возрастает, большему значению аргумента соответствует большее значение функции. При монотонно (строго) убывает, большему значению аргумента соответствует меньшее значение функции.

Свойства логарифмической функции являются ключом к решению разнообразных логарифмических уравнений.

Рассмотрим простейшее логарифмическое уравнение, все остальные логарифмические уравнения, как правило, сводятся к такому виду.

Поскольку равны основания логарифмов и сами логарифмы, равны и функции, стоящие под логарифмом, но мы должны не упустить область определения. Под логарифмом может стоять только положительное число, имеем:

Мы выяснили, что функции f и g равны, поэтому достаточно выбрать одно любое неравенство чтобы соблюсти ОДЗ.

Таким образом, мы получили смешанную систему, в которой есть уравнение и неравенство:

Неравенство, как правило, решать необязательно, достаточно решить уравнение и найденные корни подставить в неравенство, таким образом выполнить проверку.

Сформулируем метод решения простейших логарифмических уравнений:

Уравнять основания логарифмов;

Приравнять подлогарифмические функции;

Выполнить проверку.

Рассмотрим конкретные примеры.

Пример 1 - решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства первый логарифм:

Пример 2 - решить уравнение:

Данное уравнение отличается от предыдущего тем, что основания логарифмов меньше единицы, но это никак не влияет на решение:

Найдем корень и подставим его в неравенство:

Получили неверное неравенство, значит, найденный корень не удовлетворяет ОДЗ.

Пример 3 - решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства второй логарифм:

Найдем корень и подставим его в неравенство:

Очевидно, что только первый корень удовлетворяет ОДЗ.

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.
Похожие статьи