Как собрать светодиодные светильники своими руками. Cветодиодный светильник своими руками – инструкция по изготовлению Мощный светодиодный светильник своими руками 220в

29.08.2019

С удорожанием электроэнергии многие задумываются о покупке светодиодных источников света, которые приносят ощутимую экономию и являются прекрасными заменителями естественного освещения. Однако сегодня не многие могут себе позволить светодиодный светильник, ведь их стоимость еще достаточно высока. Поэтому, благодаря народным умельцам, в этой статье рассмотрим, как можно сделать осветительный прибор из светодиодов своими руками.

Что представляет собой светодиодный светильник?

Светодиоды – полупроводниковые электронные приборы, излучающие свет в результате прохождения электрического тока. Появившись 15 лет назад, приборы домашнего назначения буквально сходу завоевали рынок источников света. Сегодня можно купить светодиодные лампы любой формы, размера, мощности и цвета. Но также можно сделать их самостоятельно, что под силу даже неопытному радиолюбителю. Простейшие приборы на светодиодах могут работать при напряжении 3-5 В, т.е. от обычной батарейки. Однако его мощности хватит всего лишь для подсветки фонариком, поэтому ниже мы рассмотрим, как сделать более серьезные конструкции, позволяющие освещать комнаты.

Осветительный прибор

Состав и принцип работы светильника

Прежде, чем приступить к изготовлению светодиодного светильника своими руками, рассмотрим его конструкцию и принцип работы.
Диод – это полупроводниковый прибор, пропускающий ток через p-n переход только в одном направлении. В результате выделения энергии при рекомбинации электронов и дырок излучаются фотоны с выделением световой и тепловой энергии.

Отведение тепла в светодиодном приборе – является важной задачей при сборке светильника, ведь высокая температура приводит к деградации и выходу из строя светодиода. Поэтому наличие радиатора – обязательное условие при сборке любого светодиодного светильника.

Простейшим радиатором является алюминиевая подложка, на которой располагаются светодиоды, однако такого теплоотведения будет недостаточно, если прибор собирается на 3-х и более полупроводниках. В такие светильники устанавливают специальные металлические радиаторы. В комнатных приборах его заменяет корпус лампочки.
Кроме радиатора, LED-изделие имеет отражатель и рассеиватель, которые могут заменить металлизированный рефлектор, и линза.
Обычно светодиоды выпускаются готовой сборкой, но для того, чтобы яркий свет прибора не раздражал глаза, используют матовую колбу, которой накрывают корпус светильника.

Устройство лампочки

Сборка светильника

Схема простейшего светильника, работающего от сети 220 В, состоит из двух резисторов сопротивлением 12 кОм и двух светодиодов, установленных параллельно. Схема актуальна для четного количества LED-приборов.
Для нечетного — в схеме должен присутствовать драйвер, стабилизирующий выходной ток и напряжение. Лучше всего приобрести готовый драйвер, который подбирается под светодиодный прибор. Кроме этого, драйвер также можно сделать своими руками, используя выпрямительный мост, конденсаторы и обычные диоды, которые в сборке преобразовывают напряжение сети в напряжение заданной частоты и значения. Резисторы в такой схеме выполняют роль ограничителя силы тока.

Как видно из описанного выше, светодиодный прибор может собрать любой человек, который хотя бы раз в жизни держал в руках паяльник и умеет пользоваться интернетом, где представлено много примеров стандартных и нестандартных схем и решений для сборки светодиодного светильника.

Схема светильника

Светильники в корпусе

Светодиодная лента

Простейшую лампу можно сделать своими руками, используя светодиодную ленту, которую достаточно закрепить на любой плоской поверхности при помощи двухстороннего скотча. Для большей надежности и расширения функциональных возможностей прибора светодиодную ленту удобно размещать в корпусе от неработающей люминесцентной лампы, длина которой не превышает 30 см.
Такой светильник приспосабливают на высоте не более 80 см над письменным столом, кухонной поверхностью, аквариумом или используют его для декоративной подсветки. Свет лампы прекрасно рассеивается и не утомляет зрение.

Применение светильника

Для изготовления светодиодных светильников подойдут следующие типы лент:

  • SMD 3528 (60 (4,8 Вт); 120 (7,2 Вт); 240 (16 Вт) светодиодов на погонном 1 метре);
  • SMD 5050 (30 (7,2 Вт); 60 (14 Вт); 120 (25 Вт).

Плотность светодиодов

Плотность и расположение светодиодов на лентах типа SMD 3528 и SMD 5050

Оптимальным выбором станет LED-лента SMD 5050, параметры которой соответствуют следующим значениям:

  • угол излучения – 120 градусов;
  • напряжение питания – 12 В;
  • ток – 1,2 А/м

Светодиодную ленту с помощью скотча необходимо приклеить к внутренней части корпуса. Для работы можно купить блок питания или собрать своими руками, используя схему, приведенную ниже. Преимуществом самостоятельно собранного блока питания является то, что есть возможность скрыть его в корпусе светильника. Покупной – придется «пристроить» рядом с прибором. В любом случае собранная конструкция будет выглядеть аккуратно и работать экономно, прекрасно освещая рабочий стол.

Электрическая схема блока питания

Важным моментом во время монтажа является качественная изоляция всех токопроводящих частей.

Лампа своими руками на основе светодиодной ленты по своим параметрам не отличается от покупного варианта. При этом его стоимость выходит значительно ниже, чем стоимость готового изделия.

Светодиодные светильники на различной основе

Свет светодиодов

Экономный вариант светодиодного светильника можно сделать своими руками на базе сгоревшей лампы. Для этого ее необходимо аккуратно разобрать перегоревшую лампу, не повредив цоколь и провести его чистку и обезжиривание.
В цоколе размещаем защитный резистор на 100 Ом и два конденсатора по 220 нФ, рабочее напряжение которых составляет 400 В, конденсатор на 10 мкФ, отвечающий за отсутствие мерцания, выпрямитель (диодный мост) и светодиоды в соотношении 1 (красного свечения) к 3 (белого). Составные части схемы соединяем пайкой и изолируем монтажным клеем, заполняя все пространство цоколя между частями схемы и закрепляя их.

Кроме обычной лампы для создания светодиодного светильника своими руками используется галогенная лампа.

Галогенная лампа

Галогенная лампа

Для сборки светильника на галогенной лампе необходимы следующие составные части:

  • схема сборки, которую можно составить самостоятельно или взять из интернета;
  • светодиоды;
  • неработающая галогенная лампа;
  • быстросохнущий клей;
  • медный провод;
  • паяльник и припой;
  • алюминиевая подложка толщиной 0,2 мм, которая будет заменять радиатор;
  • резисторы;
  • дырокол.

Сборка

Процесс сборки происходит в следующей последовательности:

  • Очищаем галогенную лампу от всех составных частей и замазок.
  • Вынимаем ее из отражателя.
  • Подготавливаем диск-отражатель, на котором будут располагаться светодиоды. Диск наклеиваем на алюминиевую подложку (шаблон диска можно взять в интернете) и делаем в нем дырочки.
  • Согласно схеме, располагаем светодиоды на диске ножками вверх, учитывая их полярность. Между ними прокатываем немного клея, избегая попадания на контакты.
  • Паяем контакты светодиодов так, чтобы цепочка начиналась положительной полярностью («+») и заканчивается отрицательной («-»).
  • Положительные контакты соединяем между собой пайкой.
  • К отрицательным контактам при помощи пайки присоединяем резисторы и соединяем их контакты между собой припоем, получая отрицательно заряженные резисторы.
  • Контакты резисторов также соединяем между собой и припаиваем к ним медные провода. Во избежание короткого замыкания пространство между контактами и проводами заливаем клеем.
  • Склеиваем межу собой диск и отражатель галогенки.
  • После полимеризации клея можно подключать источник питания на 12 В.

Энергосберегающая лампа

После того, как энергосберегающая лампа отслужила свой срок и сгорела, мастера hand-made рекомендуют не выбрасывать ее, а использовать прибор для создания светодиодного осветительного прибора. Это возможно осуществить при наличии в лампе исправного электронного балласта (ЭБ) и целого корпуса с цоколем, которые станут основой нового изделия.
Чтобы завершить комплектацию, необходимо приобрести светодиоды типоразмера 5 мм и 4 сверхбыстрых диода типа UF4007.
Суть создания светодиодной лампы на основе энергосберегающей заключается в установке выпрямительного моста на выходе ЭБ, который позволит получить постоянное напряжение 100 В при токе 130 мА.
Для уменьшения частоты переменного напряжения на выходе ЭБ выпрямительный мост соберем из диодов UF4007, к выходу которого припаиваем конденсатор на 0,1 мкФ, работающий на напряжении 400 В. Диодный мост устанавливаем на место конденсатора С3 (см. типовую схему ЭБ лампы), соединяющего нити накаливания лампы, который потом замыкаем между собой.

Электрическая схема ЭБ лампы

Отдельно собираем последовательную цепь из 30 светодиодных приборов, ток потребления которых составляет 20 мА, и проверяем ее работу.
При постоянном напряжении 100 В и токе 130 мА можно собрать 5 цепочек LED-диодов по 30 штук и получить лампу, мощность которой составит 15 Вт.

Как видим из описанного выше, светодиодный светильник можно сделать своими руками, не только спаяв схему, но и используя различные приборы – светодиодную ленту и лампы разных типов.


Секреты выбора галогенных люстр с пультом управления

В жизни часто возникают такие ситуации, когда необходимо дополнительно осветить какой-то конкретный предмет интерьера или целое помещение. Приборы дополнительного освещения при этом должны располагаться над конкретными площадями. Например, над кухней, рабочей поверхностью, столом, кроватью, и даже теплицей на даче. Поэтому многие интересуются, как это сделать технически грамотно, безопасно и с минимальными финансовыми затратами. Вариантов существует много, но наиболее экономичным и простым считается использование светодиодов. Сегодня вы узнаете, как собрать светодиодный светильник своими руками.

Изготовление мощного светодиодного светильника

Сегодня практически в любом доме можно встретить экономные лампы освещения. Предлагаем вам узнать, как сделать светильник из светодиодов своими руками на 220В. Для начала необходимо разобраться, какие материалы вам понадобятся и по каким критериям их выбирать.

Пошаговая разработка устройства, рассчитанного на сетевое напряжение в 220В, выглядит так:

  • Первым делом следует проверить работоспособность всех светодиодов, измерить напряжение питающей сети. Настройку прибора лучше выполнять с помощью разделительного трансформатора 220/220В. Кроме того, этим вы обезопасите себя при проведении измерений в процессе настройки будущего светильника.

Важно! Если что-то подключить неправильно, то возможен даже взрыв, поэтому не отклоняйтесь от инструкции. Падение напряжения измерять следует с помощью мультиметра.

  • Возьмите сгоревшую лампу для последующего разбора. Делайте все максимально аккуратно, чтобы цоколь остался целым, затем очистите его и обезжирьте ацетоном или спиртом. Уделите внимание отверстию — его также необходимо очистить от лишнего припоя и дополнительно обработать. Делается это для качественной пайки внутри цоколя всех компонентов. В него вставьте два конденсатора напряжением 400 В по 220 нФ и резистор на 100 Ом.
  • С помощью обыкновенного паяльника и подготовленного диодного моста впаяйте крошечный выпрямитель, обработайте поверхность.

Важно! Работайте осторожно, чтобы не повредить ранее установленные элементы.

  • Воспользуйтесь в качестве изоляции клеем и простым монтажным пистолетом. В принципе, подойдет и трубка из ПВХ. Но лучше использовать для заполнения пространства между всеми деталями предназначенный для этого материал. Все элементы необходимо тщательно зафиксировать. В итоге — вы получите готовую основу для будущего прибора.
  • Приступаем к установке светодиодов. За основу возьмите монтажную плату, очистите ее от ненужных деталей. Проверьте все платы на работоспособность. Максимум внимания уделите контактам светодиодов — их необходимо зачистить и при необходимости заузить.
  • К конденсатору припаяйте все четыре платы. Снова заизолируйте все клеем, проверьте все соединения диодов. Платы расположите на одинаковом расстоянии друг от друга, поскольку свет должен распространяться равномерно.
  • Припаяйте конденсатор 10 мкФ без дополнительных проводов.
  • Припаяйте резистор на 100 Ом к одной из плат, заизолируйте контакты клеем.
  • Сверху лампу следует накрыть абажуром, поскольку светодиоды излучают слишком яркий цвет, сильно бьющий по глазам.

Важно! Такой самодельный светильник можно поместить в огранку, например, из ткани или бумаги, чтобы получился более мягкий свет, бра для детской комнаты или романтичный ночник. Если сменить мягкий абажур на обычный стеклянный купол, то вы получите более яркое свечение, которое глаза не раздражает. Это — идеальный вариант для дома или дачи.

Чтобы запитать лампу от USB или батареек, исключите из схемы выпрямитель и конденсатор на 400 нФ, вместо этого подключите к источнику постоянного тока созданный светодиодный светильник. Своими руками 220В подключить, как мы выяснили, не проблема.

Диодный светильник из ленты

Приобрести светодиодную ленту можно в любой точке продажи электротоваров. Стоит она недорого, внешне представляет собой уже готовую электрическую цепь из диодов и использоваться может на любой ровной поверхности. Чтобы осветить небольшой участок какой-либо поверхности, можно использовать горизонтальный диодный светильник. Своими руками его изготовить достаточно просто.

Монтаж горизонтального прибора освещения происходит в несколько этапов:

  1. Первым делом подберите алюминиевый уголок, измерьте необходимый размер, подготовьте отверстия, непосредственно через которые вы прикрепите светильник.
  2. Обезжирьте любой жидкостью, содержащей спирт, поверхность уголка, чтобы было легче закрепить на него ленту.
  3. Определите место на уголке для установки выключателя. Выпилите паз для него.
  4. Прикрепите с помощью шурупов уголок в выбранном месте.
  5. Наклейте аккуратно светодиодную ленту и в пазу укрепите выключатель.
  6. Припаяйте провода.

Важно! Существует масса вариантов изготовления подобных устройств. К примеру, можно изготовить светильник из двух алюминиевых уголков между собой соединенных шурупами. Лента при этом крепится к одному уголку таким образом, чтобы располагалась она параллельно поверхностям двух других уголков. По такой же схеме может быть изготовлена настольная лампа из светодиодной ленты своими руками.

ЛЕД-светильник из светодиодов своими руками

Если у вас под рукой не оказалось светодиодной ленты, то отчаиваться не стоит, ведь чтобы сделать ЛЕД-светильник своими руками, вам достаточно подготовить набор следующих элементов:

  • Несколько выводных светодиодов мощностью в 1Вт.
  • Теплопроводящий двухсторонний скотч.
  • Драйвера.
  • Алюминиевую поверхность для изготовления радиатора.
  • Паяльник.

Но есть несколько нюансов, с которыми следует ознакомиться до начала работы:

  • Размер алюминиевой поверхности определяется из расчета 50 на 50 мм на каждый одноваттный светодиод. Только при соблюдении этого условия тепло сможет рассеиваться эффективно.
  • Драйвера имеют маркировку, указывающую на количество светодиодов, которые выводятся из него. Случается, что маркировка отсутствует, тогда ориентироваться необходимо на выходное напряжение устройства.
  • Чтобы избежать конфузов, необходимо знать, что драйвер может иметь фильтр электромагнитных воздействий или нет.

Важно! Если после подключения самодельного устройства начались проблемы с работой компьютера или телевизора, то рекомендуется просто установить драйвер с фильтром.

Схема сборки светильника имеет такой вид:

  1. Обезжирьте спиртовым раствором поверхность радиатора, приклейте к нему теплопроводящий скотч.
  2. Обработайте спиртом основание каждого светодиода.
  3. Установите на скотч диоды так, чтобы “плюс” располагался рядом с “минусом” соседнего устройства. Немного прижмите их руками, затем с помощью паяльника нанесите на выводы немного олова.
  4. Припаяйте драйвера, подключите светильник.

Важно! Оставьте прибор в рабочем состоянии на некоторое время, спустя несколько минут дотроньтесь пальцем до его тыльной стороны: если она окажется теплой, но не горячей, значит — все расчеты и сборку вы выполнили правильно. Это говорит и о том, что его можно вставлять в корпус.

По статистическим данным, было выявлено, что стоимость светодиодных светильников значительно понизилась. Такие показатели повлекли за собой увеличение приобретения высокоэкономичных средств освещения в частные дома и квартиры. Тем, кто отлично управляется с паяльником, вовсе не потребуется поход в магазин для того, чтобы обустроить свое жилье, так как можно создать светильник своими руками, без обращения к заводским изделиям. Таким образом можно сэкономить большую сумму денег и подобрать дизайн прибора такой, который будет подходить под интерьер квартиры.

Схема светодиодного светильника.

У светодиодов есть своя особенность, заключающаяся в режиме работы постоянного тока и в низкой степени напряжения. Потому для осуществления процесса освещения преимущественно используются такие устройства, как блоки питания. Некоторые самостоятельно паяют электрические схемы на платах, что не так уж просто, особенно для тех, кто не знаком с этой сферой деятельности.

Создавая светильник своими руками, лампу или любой другой осветительный прибор, нужно брать в учет тот факт, что одна треть от такой единицы, как номинальная мощность, будет уходить на преобразование светового потока, остальные же части нужны для тепловых потерь.

Важно помнить о том, что при перегреве светодиодов может произойти сокращение срока работы. Собирая самостоятельно любую конструкцию из светодиодов, должно предусматриваться отведение тепла от всей конструкции во время подачи питания.

Какие светодиоды стоит использовать?

Таблица разновидностей светодиодов.

Первоначально желательно выбрать определенный вид светодиодов, который потребуется. Если рассматривать мощные и маломощные, то первый вид намного выгоднее, из-за того что трудоемкость выше. Отношение маломощных к мощным составляет 20:1. По таким показателям можно сделать вывод о том, что с маломощными светодиодами предстоит намного больше спаивания. Среди мощных светодиодов можно выделить пару разновидностей, одни из которых предназначены для выводных монтажных работ, а другие — для поверхностных. В большинстве случаев используют выводные, так как с ними монтажные работы проводятся намного быстрее.

Источники питания

Для долговечности светодиодов нужен отличный драйвер, а по-другому его можно назвать источником питания. Драйвер может быть корпусным и бескорпусным, с присутствием гальванической развязки и без нее. Если рассматривать именно переделку светильников, то желательно применять вид бескорпусного драйвера, в котором идет гальваническая развязка.

Вид без корпуса очень полезен тем, что он компактен по размеру, а также имеет меньшую степень нагревания. Но есть и свои определенные недостатки, которые проявляются в сложности при креплении.

Использование гальванической развязки, как правило, требуется для обеспечения безопасности, так как в этом случае можно избежать удара током. При отсутствии такой технологии некоторые получают минимальные удары электрического разряда.

Электрическая схема светодиодного светильника.

При выборе драйверов желательно обращать свое внимание на указание минимального и максимального количества светодиодов, которое можно подвести к подключению. Если же такие данные отсутствуют, то стоит просматривать выходные показатели напряжения источника питания.

Источник питания может быть двух видов, один из которых состоит из фильтра электромагнитной помехи, а второй, соответственно, его не имеет. Устройства, которые не имеют фильтров, в большей степени обладают помехами электромагнитных волн и проведения частот на приемники.

Использование радиатора для светодиодов

Для того чтобы пользоваться светодиодом успешно и долго, стоит применять радиаторы, так как они такие же важные составляющие процесса, как и источники питания. Радиатор должен быть выполнен исключительно из алюминия. Найти такой материал очень просто, так как у каждого человека найдется старая посуда из алюминия. Для того чтобы можно было рассеять тепло со светодиода, нужно брать в учет именно размер площади, а не толщину. Стоит отметить, что на компьютерных кулерах установлены вентиляторы, так как без такого устройства тепло от светодиода будет отводиться с минимальной скоростью.

Процесс изготовления светильника своими руками

Перед тем как начать разработку светильника самостоятельно, желательно подготовить все необходимые инструменты. В частности, желательно обзавестись:

Схема корпуса светильника.

  • базовыми и запасными светодиодами;
  • микротрансформатором;
  • мультиметром;
  • красными светодиодными лампочками;
  • резистором на 100 Ом;
  • конденсатором на 400 мкФ и на 10 мкФ;
  • патроном;
  • обезжиривателем;
  • паяльником;
  • монтажным клеем;
  • доской;
  • абажуром.

Первоначально желательно провести проверку каждого светодиода, который будет включен в цепь, и качество питающего напряжения в сетевом кабеле. Чтобы осуществить такой процесс, стоит использовать микротрансформатор. Таким образом, при настраивании и при тестовой проверке будущего прибора освещения регулировка будет проводиться намного плавне.

Для того чтобы измерять, падает напряжение при постоянном токе и воздействии на резистор или нет, и для точного расчета тока диодов применяют мультиметр. Как правило, при самостоятельной сборке стараются использовать шестивольтовые светильники, но нередко могут понадобиться и те, которые рассчитаны на 12 вольт.

Сами же диоды должны быть высокого качества, чтобы можно было избежать неприятного голубоватого свечения, которое не просто испортит внешний вид светильника, но также и навредит глазам.

Схема подключения светодиодных частей на корпус светильника.

Схему сборки можно назвать очень простой и без потери для драйвера. Единственный недочет состоит в отсутствии изоляции у проводов, то есть сам светильник из светодиодов может быть подвержен токовым ударам. Ориентируясь на последние данные, стоит учитывать, что желательно беречь лампу от падения, но впоследствии схема может быть модернизирована.

  1. Резисторы нужны для защиты платы при подключении к сети, чтобы избежать скачка напряжения. В случае его отсутствия желательно применение крошечного выпрямительного моста.
  2. Использование конденсатора 400 мкФ требуется для того, чтобы установить энергию на нужном уровне, которая требуется для передачи и дополнительного добавления ламп, при свободной пропускной способности. Перед работой желательно убедиться в том, что в работе идет именно вид номинального напряжения, которое, как правило, вполовину больше обычного тока в сети.
  3. Применение конденсатора 10 мкФ нужно для создания идеального источника света, а также для исключения таких последствий, как блики и мигания. Высота номинального напряжения в этом случае должна превышать показатели предыдущего конденсатора вдвое.

Если нет возможности приобретения нового патрона, его можно изъять из старой лампы. Для этого нужно аккуратно разбить лампочку, причем так, чтобы не повредилась гнездовая часть патрона. После такой процедуры сам патрон стоит защитить и обработать при помощи обезжиривателя. Важно, что перед установкой отверстие в патроне проверяется еще раз на наличие остатков лампы, которые могут навредить будущей системе освещения, и желательно провести дополнительную обработку при помощи ацетона или спирта.

Крепление патрона к резистору и транзистору

Далее дело идет за паяльными работами. Посредством паяльника проводится установка крошечного выпрямителя, причем материалы должны быть заранее подготовлены и находиться под рукой. Поверхность обрабатывается в обязательном режиме, а сами действия должны быть максимально точны и аккуратны, для того чтобы исключить повреждения уже установленных деталей.

Для того чтобы провести термоусадку, применяют любой вид монтажного клея, так как материал должен быть предназначен для проведения подобных действий, и ни в коем случае не канцелярского назначения.

Установка светодиодных ламп считается самым важным и интересным моментом во всей сборке светильника. Основой будет служить заранее купленная или же приготовленная от старых приборов доска. Если она принадлежала старым конструкциям, то, соответственно, доска должна быть очищена от деталей и различных заусенцев.

Проводя и подключая каждый контакт, их стоит проверять и очищать, если сигнал не поступает. Остается совсем немного — и светильник сможет радовать своего создателя. Для того чтобы завершить работу, нужно попросту собрать все детали, которые имеются. Если быть точнее, то каждая деталь припаивается к планшетке и к устройству резистора. Далее все изолируется при помощи клея, проверяются соединения между диодами для правильного распространения света.

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».
При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.
    Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:
  • Потрясающая экономичность (до 10 раз в сравнение с лампами накаливания).
  • Огромный срок службы.
  • Совершенные и безопасные блоки питания (драйверы).
  • Абсолютно не зависят от количества включений.
  • При нормальном охлаждении не теряют яркости практически весь период эксплуатации.
  • Полная механическая безопасность (даже если разбить декоративный рассеиватель, никаких вредных веществ в помещение не попадет).
Недостатка два:
  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).
Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.
Но именно в этой конструкции кроется «засада».


Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.
Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.
Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.
Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.
Есть два основных направления при разработке светодиодных источников света:
1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.
2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.
Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».


Характеристики следующие:
  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый
Такое добро продается по 3 рубля пучок на любом радиорынке.
Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.


В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.
Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.
Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя
Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.


После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.
Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.
Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.
Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).
Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.
Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.
Расчет гасящего конденсатора производится по формуле:
I = 200*C*(1.41*U cети - U led)
I – полученный ток цепи в амперах
200 – это константа (частота сети 50Гц * 4)
1,41 – константа
С – емкость конденсатора С1 (гасящего) в фарадах
U сети – предполагаемое напряжение сети (в идеале – 220 вольт)
U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)
Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.
Для удобства можно создать формулу в Exel.


Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.
Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.


В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.


После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.



Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.



Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.


Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.



Собственно, установка.


Светит равномерно, в глаза не бьёт.


Люмены не мерял, по ощущениям – ярче, чем лампа накаливания 40 Вт, немного слабее 60 Вт.


LED лампа в плоский потолочный светильник на кухню


Идеальный донор для подобного проекта. Все светодиоды буду расположены в одной плоскости.


Рисуем шаблон, вырезаем матрицу для размещения LED элементов. При таком диаметре плоский лист ПВХ будет деформироваться. Поэтому я использовал донышко от пластикового ведра из-под строительных смесей. По внешнему контуру есть ребро жесткости.


Диоды устанавливаются с помощью привычного шила: 2 дырки по разметке.

Несколько лет назад популярность светодиодных лент просто зашкаливала. На сегодняшний день потребность в них снизилась, но, несмотря на это, многие люди до сих пор используют данные источники света в качестве подсветки и украшения для натяжных или гипсокартонных потолков. А следуя приведенным ниже инструкциям и правилам электротехнической безопасности, вы сможете смастерить уникальный светильник из светодиодной ленты своими руками.

Понятие и сферы применения

Светодиодные светильники имеют массу преимуществ, но главным недостатком по-прежнему остается чересчур высокая стоимость. Последнее нивелируется низким потреблением электроэнергии и большим рабочим ресурсом, но все же намного дешевле соорудить собственный осветительный прибор, отдельно купив дешевые гибкие платы и светодиоды. Стоимость одного погонного метра светодиодной ленты составляет около 100–250 рублей.

Если желаете сэкономить, то покупайте ленту в бухтах по 10 м, тщательно выбирая необходимый класс светодиодов. Используются данные устройство во всех сферах жизнедеятельности, на объектах, где требуется искусственное освещение.

По сравнению с лампами накаливания у гибких источников света на led-диодах огромное количество преимуществ:

  • высокая экономичность;
  • продолжительный срок эксплуатации;
  • доступность;
  • возможность выбора форм;
  • безопасность;
  • гибкость.

Области применения светодиодной ленты безграничны. Она используется в качестве подсветки для аквариума, потолка, мебели и других предметов интерьера, рабочих зон, витрин (чаще все-таки неоновые ленты). Перечислить все возможные варианты нереально. Здесь главное – научиться правильно выбирать светодиодную ленту в зависимости от конкретной задачи, ориентируясь на технико-эксплуатационные характеристики.

Применение разноцветной гибкой платы на натяжных потолках обусловлено глянцевой поверхностью, отлично отражающей падающие световые лучи, что позволяет добиться интересных эффектов - от визуального увеличения комнаты до создания незабываемой романтической обстановки. Сделать это при помощи классической люстры или точечных светильников гораздо сложнее.

Вообще светодиодная лента - самый универсальный источник света. Из нее можно создавать неповторимые рисунки и формы, а для ее самостоятельного изготовления используются едва ли не любые материалы. Наиболее распространенными считаются приборы из пластика и поливинилхлорида.

Виды и параметры

Для самостоятельного изготовления светодиодного светильника нужно как следует изучить широкий модельный ряд диодов, представленный как бюджетными, так и элитными аналогами.

Наиболее востребованными считаются недорогие диодные конструкции следующих серий:

  1. SMD 3528 - диоды располагаются плотно друг другу, при этом на один погонный метр может быть как 60, так и 240 штук. Их количество влияет на мощность прибора (5–16 Вт) и световой поток (5–9 лм).
  2. SMD 2835 Premium - одна из лучших лент бюджетного исполнения, характеризующаяся более высокой яркостью по сравнению с остальными типами. На один погонный метр приходится 60–120 led-диодов, при этом отрезки могут нарезаться длиной по 5 см (около трех диодов). Идеальное решение для украшения и подсветки небольших предметов интерьера или создания точечного освещения. Величина светового потока насчитывает 20–23 лм.
  3. SMD 3014 схожа с предыдущей моделью. На одном погонном метре может быть от 60 до 120 полупроводников. В зависимости от их числа мощность составляет 36/72 Вт, световой поток - 6/11 лм.

Из светодиодных лент, оснащенных более мощными полупроводниками, выделим следующие модели:

  1. SMD 5050 - на один погонный метр приходится 30–120 светодиодов. Мощность варьируется от 7,2 до 25 Вт, световой поток - 50–60 лм.
  2. SMD 5630 и SMD 5730 - схожие серии, характеризующиеся повышенной мощностью, продолжительной эксплуатацией и яркостью 50–60 лм. Чаще всего эксплуатируются в светодиодных светильниках.

Помимо классических моделей уже изобретены более современные и неординарные конструкции:

  • высоковольтная гибкая плата, предназначенная для прямого подключения к сети на 220 В;
  • низковольтные решения на 12 или 24 В, в электрическую цепь которых подключают выпрямитель;
  • модели с влагозащитным корпусом.

Светодиодная лента продается в бухтах по 5–10 м, но при необходимости обычными ножницами может быть разрезана на отрезки необходимой длины. Если возникла необходимость в монтаже ленты на большую поверхность, то помните общее для всех правило: на каждые 15 пог. м нужно устанавливать один блок питания.

Высоковольтные платы не имеют каких-либо ограничений по метражу и реализуются в бухтах по 100 м. Обычно нарезка выполняется по длине 50 или 100 см.

Экземпляры с повышенной защитой от влаги конструктивно идентичны обычным платам. Разница связана с наличием защитного силиконового покрытия, обеспечивающего определенную защиту от проникновения пыли и влаги:

  • IP44 - хорошая защита от попадания пыли и грязи;
  • IP65 - защита от пыли и влаги с сохранением высокой эластичности в условиях низких температур;
  • IP67 - защитное покрытие выполнено в форме прочной силиконовой трубки;
  • IP68 - повышенная защита в виде двухслойной силиконовой трубки со специальным наполнителем.

Изделия с классом защиты IP67 и IP68 используются для качественной подсветки аквариумов, бассейнов и других искусственных водоемов. При этом глубина погружения не должна превышать 1 м. Если на упаковке указан класс IP33, то такое устройство выпускается без силиконовой защиты.

Типы применяемых led-диодов

При создании самодельной ленты, светящейся одним цветом, подойдут полупроводники типа SMD 3028 или SMD 5050. Во втором случае используются три кристалла, поэтому свечение будет наиболее ярким, но и потребление электроэнергии выше. Также яркость зависит от числа элементов, расположенных на 1 пог. м.

Количество светодиодов на условный метр влияет на суммарную нагрузку изделия:

  • 30 элементов типа SMD 5050 - 7,2 Вт;
  • 60 SMD З528 - 4,8 Вт;
  • 60 SMD 5050 - 15 Вт;
  • 120 SMD З528 - 9,6 Вт;
  • 120 SMD 5050 - 25 Вт;
  • 240 SMD З528 - 19,2 Вт;

Платы с полупроводниками, расположенными в несколько рядов, именуются многорядными. В таких случаях обычно используют технологию RGB, позволяющую получить разноцветное свечение.

Ввиду наличия нескольких стандартов производители изготавливают ленту, работающую от источника постоянного тока напряжением 12 или 24 В, или напрямую от сети переменного тока 220 В.

Для чего нужны контроллеры и блоки питания

При изготовлении самодельных осветительных приборов на основе светодиодов необходимо установить специальный адаптер (выпрямитель, блок питания), который будет преобразовывать переменное электричество 220 В в постоянный ток 12/24 В в соответствии с мощностью используемых полупроводников.

Чтобы сделать правильный выбор и купить подходящий блок питания, подсчитайте количество диодов на одном погонном метре, после чего сначала умножьте его на мощность одного led-диода, а затем - на количество погонных метров. В конце обязательно следует дать небольшой запас - около 10–15%.

К примеру, если вы используете диоды типа SMD 5050, устанавливаете приблизительно по 60 штук на погонный метр и протяженность платы составляет 5 м, то (исходя из таблицы выше) общая нагрузка будет равна 15*5=75 Вт. Увеличьте значение на 15% и получите необходимую мощность адаптера - 86–87 Вт. При сборке гибкой платы с регулируемым уровнем яркости и переключением света электрическая схема должна быть дополнена контроллером и пультом ДУ.

Подготовка материалов и деталей

Прежде чем приступать к работе, подсчитайте требуемое число светодиодов, их яркость и мощность используемого адаптера. В зависимости от предназначения светильника длина платы будет составлять:

  • ночник, подсветка для выключателя или розетки - небольшой отрезок с тремя диодами;
  • аквариум - отрезок, равный длине стенки или периметру емкости;
  • освещение грядки - несколько частей, длина которых соответствует протяженности грядки;
  • подсветка для компьютерной клавиатуры - в соответствии с длиной периферийного оборудования;
  • при замене люминесцентной лампы - несколько частей, длина которых соответствует длине лампы.

Яркость свечения ленты, ее размеры и плотность расположенных полупроводников зависят от конкретных условий. Мощность блока, как отмечалось выше, должна равняться общей нагрузке с запасом 10–15%.

Также вам могут пригодиться провода, трубка для термоусадки и изоляции, паяльник, олово, канифоль. Вместо паяльника можно использовать специальные коннекторы. Ни в коем случае не паяйте ленту с помощью кислоты, которая приведет к окислению и разрушению проводников или короткому замыканию.

В случае применения платы в качестве подсветки для аквариума воспользуйтесь прозрачной трубкой, а для повышения влагозащиты используйте силиконовый герметик.

Сборка светильника

Тщательно продумав конструкцию светильника, собрав нужные инструменты и материалы, можно приступить к его изготовлению. В некоторых случаях весь процесс заключается в банальном приклеивании платы к какому-либо основанию - например, к клавиатуре. В других ситуациях может потребоваться частичная или полная переделка источника света.

При установке такого светильника нужно учитывать несколько дополнительных факторов:

  1. Блок питания, используемый для понижения напряжения, следует разместить на максимально близком расстоянии к диодам. С увеличением протяженности проводки возрастают потери напряжения, что приведет к снижению уровня освещения.
  2. При размещении на металлическом основании между лентой и светодиодами нужно проложить слой изоляции.
  3. Если лента подключается к промышленной сети 220 В через конденсатор, то обязательно следует покрыть ее силиконовым герметиком. Желательно в два слоя.

Важно! Лента, подключаемая через блок питания, характеризуется повышенной электрической и пожарной безопасностью, чего не скажешь о п. 3 из предыдущего списка. Работы с такой платой следует выполнять при полном отключении напряжения.

Особенности и этапы выполнения монтажных работ

Для создания необычного светильника из диодной ленты подойдут самые разные предметы - от стандартного цоколя лампы накаливания до корпуса люминесцентного источника света.

Подобные процедуры сопровождаются многочисленными требованиями, главные из которых:

  1. При подключении самодельного прибора нужно использовать многожильную проводку. Один конец оборудуется наконечником с сечением 0,75 мм и коммутируется с контроллером, а другой припаивается к концам светодиодной платы. Для повышения фиксации следует применить термоусадочные трубки.
  2. Если устройство монтируется на навесные потолки, то желательно использовать самоклеющуюся ленту. Перед поклейкой предварительно очистите и обезжирьте поверхность потолка, дав ей как следует просохнуть. Снимать защитную пленку на тыльной стороне гибкой платы нужно непосредственно перед монтажом. Малейшая грязь или пыль, осевшая на клеевом слое, приведет к ухудшению адгезии. Негативно на адгезии сказывается и наличие влаги. Если лента устанавливается в помещении с повышенной влажностью, то обязательно следует наладить проветривание. На улице подобные действия нужно выполнять исключительно в сухую погоду.
  3. При расстоянии свыше 7 м между блоком питания и самодельной лентой нужно увеличить сечение провода.

Подключение адаптера выполняется с соблюдением полярности и клемм:

  • для одноцветных лент технология максимально проста - «плюс» спаивается с «плюсом», а «минус» - с «минусом»;
  • для разноцветных лент присуща своя маркировка - V+ (напряжение), R, G, B для переключения цвета (к контроллеру).

Дополнительно разноцветные светодиодные платы оснащаются диммерами, предназначенными для изменения яркости и смены цвета свечения. В комплекте с ними идет пульт для дистанционного управления. Низковольтное оборудование на 12 или 24 В - идеальное решение для дома или квартиры, высоковольтные гибкие платы - для организации уличного освещения.

Соблюдая ряд технических рекомендаций и правил безопасности, вы с легкостью сможете создать необычную подсветку предметов интерьера, аквариума, бассейна, потолка и т. д. Стоимость светильников, изготовленных по этому принципу своими руками, гораздо ниже заводских led-приборов.

Похожие статьи