II. Митохондрии (строение и функции)

20.10.2019

Митохондрии - органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках и симпластах большие количества митохондрий сосредоточены вдоль рабочих элементов - сократительных фибрилл. В клетках, функции которых сопряжены с особо высокими энергозатратами, митохондрии образуют множественные контакты, объединяясь в сеть, или кластеры (кардиомиоциты и симпласты скелетной мышечной ткани). В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание - это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета. На ультрамикроскопическом уровне стенка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана имеет относительно ровную поверхность, внутренняя - образует направленные в центр складки, или кристы. Между наружной и внутренней мембранами возникает неширокое (около 15 нм) пространство, которое называется наружной камерой митохондрии; внутренняя мембрана ограничивает внутреннюю камеру. Содержимое наружной и внутренней камер митохондрии различно, и так же, как и сами мембраны, существенно отличается не только по рельефу поверхности, но и по ряду биохимических и функциональных признаков. Наружная мембрана по химическому составу и свойствам близка к другим внутриклеточным мембранам и плазмолемме.

Ее характеризует высокая проницаемость, благодаря наличию гидрофильных белковых каналов. Эта мембрана имеет в своем составе рецепторные комплексы, распознающие и связывающие вещества, поступающие в митохондрию. Ферментный спектр наружной мембраны небогат: это ферменты метаболизма жирных кислот, фосфолипидов, липидов и др. Главной функцией наружной мембраны митохондрии является отграничение органеллы от гиалоплазмы и транспорт необходимых для осуществления клеточного дыхания субстратов. Внутренняя мембрана митохондрий в большинстве клеток тканей различных органов формирует кристы в виде пластин (ламеллярные кристы), что значительно увеличивает площадь поверхности внутренней мембраны. В последней 20-25 % всех белковых молекул составляют ферменты дыхательной цепи и окислительного фосфорилирования. В эндокринных клетках надпочечников и половых желез митохондрии участвуют в синтезе стероидных гормонов. В этих клетках митохондрии имеют кристы в виде трубочек (тубул), упорядоченно расположенных в определенном направлении. Поэтому кристы митохондрий в стероидпродуцирующих клетках названных органов именуются тубулярными. Матрикс митохондрии, или содержимое внутренней камеры, представляет собой гелеобразную структуру, содержащую около 50 % белков. Осмиофильные тельца, описанные при электронной микроскопии, - это резервы кальция. Матрикс содержит ферменты цикла лимонной кислоты, катализирующие окисление жирных кислот, синтез рибосом, ферменты, участвующие в синтезе РНК и ДНК. Общее число ферментов превышает 40. Помимо ферментов, матрикс митохондрии содержит митохондриальную ДНК (митДНК) и митохондриальные рибосомы. Молекула митДНК имеет кольцевидную форму. Возможности внутримитохондриального белкового синтеза ограничены - здесь синтезируются транспортные белки митохондриальных мембран и некоторые ферментные белки, участвующие в фосфорилировании АДФ. Все остальные белки митохондрии кодируются ядерной ДНК, и их синтез осуществляется в гиалоплазме, и в дальнейшем они транспортируются в митохондрию. Жизненный цикл митохондрий в клетке короткий, поэтому природа наделила их двойственной системой воспроизводства - помимо деления материнской митохондрии, возможно образование нескольких дочерних органелл путем почкования.

  • Микроскопический анализ постоянного микропрепарата «Клетки эпителия кожи лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови лягушки»
  • Микроскопический анализ постоянного микропрепарата «Клетки крови человека»
  • Практическое занятие №2
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Практическое занятие №3
  • 3. Вопросы для самоподготовки по данной теме:
  • 7. Содержание занятия:
  • Эндоплазматическая сеть (эпс)
  • Рибосомы
  • Пластинчатый комплекс Гольджи
  • Микротрубочки
  • 2. Органоиды с защитной и пищеварительной функцией Лизосомы
  • Пероксисомы (микротельца)
  • 3. Органоиды, участвующие в энергообеспечении клетки
  • Митохондрии
  • 4. Органоиды, участвующие в делении и движении клеток
  • Клеточный центр
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа №1
  • Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия»
  • Микроскопический анализ постоянного препарата «Клеточный центр в делящихся клетках лошадиной аскариды»
  • 3. Микроскопический анализ постоянного препарата «Митохондрии в клетках печени»
  • 4. Микроскопический анализ постоянного препарата «Лизосомы»
  • Практическая работа №1 Работа с электронными микрофотографиями:
  • 1. Рибосомы
  • 2. Гранулярная эндоплазматическая сеть
  • Цитоплазматические микротрубочки
  • Практическое занятие № 4
  • 7. Содержания занятия:
  • 7.1. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия. Митотическая активность в тканях и клетках
  • 7.3. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Митоз (непрямое деление) в клетках корешка лука
  • 2. Амитоз (прямое деление) в клетках печени мыши
  • Практическое занятие №5
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • Решение задач
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7. Содержания занятия
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3.Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • Решение типовых и ситуационных задач
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 12
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Анализ родословных
  • 2. Близнецовый метод исследования генетики человека
  • 7.4. Самостоятельная работа студентов под контролем преподавателя.
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • 1. Дерматоглифический метод исследования генетики человека
  • 2. Цитогенетический метод в исследовании генетики человека
  • Изучение хромосомного набора
  • Экспресс-метод определения полового хроматина
  • 3. Проведение дактилоскопического анализа
  • Выводы: ___________________________________________________________
  • 4.Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок).
  • 5.Экспресс-метод исследования х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
  • 8. Задание для самостоятельной работы студентов.
  • Практическое занятие № 14
  • 2. Учебные цели:
  • 3. Вопросы для самоподготовки к освоению данной темы:
  • 7. Содержания занятия:
  • 7.1. Контроль исходного уровня знаний и умений.
  • 7.2. Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
  • Популяционно-статистический метод
  • 2. Биохимический метод
  • 3. Молекулярно-генетический метод
  • Полимеразная цепная реакция синтеза днк
  • 7.4. Самостоятельная работа студентов под контролем преподавателя. Практическая работа
  • 1. Применение закона Харди-Вайнберга для расчета частот генотипов, аллелей и характеристики генетической структуры популяции (группы), используя тест на праворукость и леворукость
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Наблюдаемые и ожидаемые частоты генотипов и аллелей
  • Наблюдаемые частоты генотипов и аллелей
  • Молекулярно-генетический метод: моделирование пцр-анализа делеции f508 гена cftr при диагностике муковисцидоза
  • 5’ Act gcg agc t 3’
  • 3’A ccc gct cta 5’
  • 8. Задание для самостоятельной работы студентов.
  • 7. Содержания занятия:
  • 3.5.2. Дополнительная литература2
  • Митохондрии

    Митохондрии - это структуры палочковидной или овальной формы (греч. mitos - нить, chondros - гранула). Они обнаружены во всех животных клетках (исключая зрелые эритроциты): у высших растений, у водорослей и простейших. Отсутствуют они только у прокариот бактерий.

    Эти органеллы впервые были обнаружены и описаны в конце прошлого столетия Альтманом. Несколько позже эти структуры были названы митохондриями. В 1948 г. Хогебум указал на значение митохондрий как центра клеточного дыхания, а в 1949 г. Кеннеди и Ленинджер установили, что в митохондриях протекает цикл окислительного фосфорилирования. Так было доказано, что митохондрии служат местом генерирования энергии.

    Митохондрии видны в обычном световом микроскопе при специальных методах окраски. В фазово - контрастном микроскопе и в «темном поле» их можно наблюдать в живых клетках.

    Строение, размеры, форма митохондрий очень вариабельны. Это зависит в первую очередь от функционального состояния клеток. Например, установлено, что в мотонейронах мух, летающих непрерывно 2 часа, проявляется огромное количество шаровидных митохондрий, а у мух со склеенными крыльями число митохондрий значительно меньше и они имеют палочковидную форму (Л. Б. Левинсон). По форме они могут быть нитевидными, палочковидными, округлыми и гантелеобразными даже в пределах одной клетки.

    Митохондрии локализованы в клетке, как правило, либо в тех участках, где расходуется энергия, либо около скоплений субстрата (например, липидных капель), если таковые имеются.

    Строгая ориентация митохондрий обнаруживается вдоль жгутиков сперматозоидов, в поперечно-полосатой мышечной ткани, где они располагаются вдоль миофибрилл, в эпителии почечных канальцев локализуются во впячиваниях базальной мембраны и т.д.

    Количество митохондрий в клетках имеет органные особенности, например, в клетках печени крыс содержится от 100 до 2500 митохондрий, а в клетках собирательных канальцев почки - 300, в сперматозоидах различных видов животных от 20 до 72, у гигантской амебы Chaos chaos их число достигает 500 000. Размеры митохондрий колеблются от 1 до 10 мкм.

    Ультрамикроскопическое строение митохондрий однотипно, независимо от их формы и размера. Они покрыты двумя липопротеидными мембранами: наружной и внутренней. Между ними располагается межмембранное пространство.

    Впячивания внутренней мембраны, которые вдаются в тело митохондрий, называются кристами . Расположение крист в митохондриях может быть поперечным и продольным. По форме кристы могут быть простыми и разветвленными. Иногда они образует сложную сеть. В некоторых клетках, например, в клетках клубочковой зоны надпочечника кристы имеют вид трубочек. Количество крист прямо пропорционально интенсивности окислительных процессов, протекающих в митохондриях. Например, в митохондриях кардиомиоцитов их в несколько раз больше, чем в митохондриях гепацитов. Пространство, ограниченное внутренней мембраной, составляет внутреннюю камеру митохондрий. В нем между кристами находится митохондриальный матрикс - относительно электронно плотное вещество.

    Белки внутренней мембраны синтезируются миторибосомами, а белки внешней мембраны - циторибосомами.

    "Наружная мембрана митохондрий по многим показателям сходна с мембранами ЭПС. Она бедна окислительными ферментами. Немного их и в мембранном пространстве. Зато внутренняя мембрана и митохондриальный матрикс буквально насыщены ими. Так, в матриксе митохондрий сосредоточены ферменты цикла Кребса и окисления жирных кислот. Во внутренней мембране локализована цепь переноса электронов, ферменты фосфорилирования (образования АТФ из АДФ), многочисленные транспортные системы.

    Кроме белка и липидов, в состав мембран митохондрий входит РНК, ДНК, последняя обладает генетической специфичностью, и по своим физико-химическим свойствам отличается от ядерной ДНК.

    При электронно-микроскопических исследованиях обнаружено, что поверхность наружной мембраны покрыта мелкими шаровидными элементарными частицами. Внутренняя мембрана и кристы содержат подобные элементарные частицы на «ножках», так называемые грибовидные тельца. Они -состоят из трех частей: головки сферической формы (диаметр 90-100 А°), ножки цилиндрической формы, длиной 5 нм и шириной 3-4 нм, основания, имеющего размеры 4 на 11 нм. Головки грибовидных телец связаны с фосфорилированием, затем обнаружено, что головки содержат фермент, обладающий АТФ-идной активностью.

    В межмембранном пространстве находится вещество, обладающее более низкой электронной плотностью, чем матрикс. Оно обеспечивает сообщение между мембранами и поставляет для ферментов, находящихся в обеих мембранах, вспомогательные катализаторы-коферменты.

    В настоящее время известно, что наружная мембрана митохондрий хорошо проницаема для веществ, имеющих низкий молекулярный вес, в частности, белковых соединений. Внутренняя мембрана митохондрий обладает избирательной проницаемостью. Она практически непроницаема для анионов (Cl -1 , Br -1 , SO 4 -2 , HCO 3 -1 , катионов Sn +2 , Mg +2 , ряда cахаров и большинства аминокислот, тогда как Са 2+ , Мп 2+ , фосфат, многокарбоновые кислоты легко проникают через нее. Имеются данные о наличии во внутренней мембране нескольких переносчиков, специфических к отдельным группам проникающих анионов и катионов. Активный транспорт веществ через мембраны осуществляется благодаря использованию энергии АТФ-азной системы или электрического потенциала, генерируемого на мембране в результате работы дыхательной цепи. Даже АТФ, синтезированная в митохондриях, может выйти с помощью переносчика (сопряженный транспорт).

    Матрикс митохондрий представлен мелкозернистым электронно-плотным веществом. В нем располагаются миторибосомы, фибриллярные структуры, состоящие из молекул ДНК и гранул, имеющих диаметр более 200А ◦ образованные солями: Ca 3 (PO 4) , Ba 3 (PO 4) 2 , Mg 3 (PO 4) . Полагают, что гранулы служат резервуаром ионов Са +2 и Мg +2 . Их количество увеличивается при изменении проницаемости митохондриальных мембран.

    Присутствие в митохондриях ДНК обеспечивает участие митохондрий в синтезе РНК и специфических белков, а также указывает на существование цитоплазматической наследственности. Каждая митохондрия содержит в зависимости от размера одну или несколько молекул ДНК (от 2 до 10). Молекулярный вес митохондриальной ДНК около (30-40)*10 6 у простейших, дрожжей, грибов. У высших животных около (9–10) *10 6.

    Длина ее у дрожжей примерно равна 5 мкм, у растений - 30 мкм. Объем генетической информации, заключенный в митохондриальной ДНК, невелик: он состоит из 15-75 тыс. пар оснований, которые могут кодировать в среднем 25-125 белковых цепей с молекулярным весом около 40000.

    Митохондриальная ДНК отличается от ядерной ДНК рядом особенностей: более высокой скоростью синтеза (в 5-7 раз), она более устойчива к действию ДНК-азы, представляет собой двухкольцевую молекулу, содержит больше гуанина и цитозина, денатурируется при более высокой температуре и легче восстанавливается. Однако не все митохондриальные белки синтезируются митохондриальной системой. Так, синтез цитохрома С и других ферментов обеспечивается информацией, содержащейся в ядре. В матриксе митохондрий локализованы, витамины А, В 2 , В 12 , К, Е, а также гликоген.

    Функция митохондрий заключается в образовании энергии, необходимой для жизнедеятельности клеток. Источником энергии в клетке могут служить различные соединения: белки, жиры, углеводы. Однако единственным субстратом, который немедленно включается в энергетические процессы, является глюкоза.

    Биологические процессы, в результате которых в митохондриях образуется энергия, можно подразделить на 3 группы: I группа - окислительные реакции, включающие две фазы: анаэробную (гликолиз) и аэробную. II группа - дефосфорилирование, расщепление АТФ и высвобождение энергии. III группа - фосфорилирование, сопряженное с процессом окисления.

    Процесс окисления глюкозы вначале происходит без участия кислорода (анаэробным или гликолитическим путем) до пировиноградной или молочной кислоты.

    Однако при этом энергии выделяется лишь небольшое количество. В дальнейшем эти кислоты вовлекаются в процессы окисления, которые протекают с участием кислорода, т. е. являются аэробными. В результате процесса окисления пировиноградной и молочной кислоты, названной циклом Кребса, образуется углекислый газ, вода и большое количество энергии.

    Образующаяся энергия не выделяется в виде тепла, что привело бы к перегреванию клеток и гибели всего организма, а аккумулируется в удобной для хранения и транспорта форме в виде аденозинтрифосфорной кислоты (АТФ). Синтез АТФ происходит из АДФ и фосфорной кислоты и вследствие этого называется фосфорилированием .

    В здоровых клетках фосфорилирование сопряжено с окислением. При заболеваниях сопряженность может разобщаться, поэтому субстрат окисляется, а фосфорилирование не происходит, и окисление переходит в тепло, а содержание АТФ в клетках снижается. В результате повышается температура и падает функциональная активность клеток.

    Итак, основная функция митохондрий заключается в выработке практически всей энергии клетки и происходит синтез компонентов, необходимых для деятельности самого органоида, ферментов «дыхательного ансамбля», фосфолипидов и белков.

    Еще одной стороной деятельности митохондрий является их участие в специфических синтезах, например, в синтезе стероидных гормонов и отдельных липидов. В ооцитах разных животных образуются скопления желтка в митохондриях, при этом они утрачивают свою основную систему. Отработавшие митохондрии могут накапливать также продукты экскреции.

    В некоторых случаях (печень, почки) митохондрии способны аккумулировать вредные вещества и яды, попадающие в клетку, изолируя их от основной цитоплазмы и частично блокируя вредное действие этих веществ. Таким образом, митохондрии способны брать на себя функции других органоидов клетки, когда это требуется для полноценного обеспечения того или иного процесса в норме или в экстремальных условиях.

    Биогенез митохондрий. Митохондрии представляют собой обновляющиеся структуры с довольно кратким жизненным циклом (в клетках печени крысы, например, период полужизни митохондрий охватывает около 10 дней). Митохондрии образуются в результате роста и деления предшествующих митохондрий. Деление их может происходить тремя способами: перетяжкой, отпочковыванием небольших участков и возникновением дочерних митохондрий внутри материнской. Делению (репродукции) митохондрий предшествует репродукция собственной генетической системы - митохондриальной ДНК.

    Итак, согласно взглядам большинства исследователей, образование митохондрий происходит преимущественно путем саморепродукции их de novo.

    Происхождение митохондрий

    Межмембранное пространство

    Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его толщина - 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Напротив, крупным белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся в периплазматическом пространстве, является цитохром c - один из компонентов дыхательной цепи митохондрий.

    Внутренняя мембрана

    Внутренняя мембрана образует многочисленные гребневидные складки - кристы, существенно увеличивающие площадь ее поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина - особого фосфолипида , содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов . Ещё одна особенность внутренней мембраны митохондрий - очень высокое содержание белков (до 70 % по весу), представленных транспортными белками , ферментами дыхательной цепи , а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы , состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ . В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи . Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

    Матрикс

    Матрикс - ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата , жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК , РНК и собственный белоксинтезирующий аппарат митохондрии.

    Митохондриальная ДНК

    Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу , в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре . В целом митохондриальная ДНК кодирует 2 рРНК , 22 тРНК и 13 субъединиц ферментов дыхательной цепи , что составляет не более половины обнаруживаемых в ней белков . В частности, под контролем митохондрального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть тРНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

    На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

    Таким образом, суммарная реакция, катализируемая ферментами дыхательной цепи, состоит в окислении НАДН кислородом с образованием воды. По сути этот процесс заключается в ступенчатом переносе электронов между атомами металлов , присутствующих в простетических группах белковых комплексов дыхательной цепи, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. При этом сами электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая же при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. При этом считается, что в процессе транспорта по дыхательной цепи пары электронов перекачивается от трёх до шести протонов.

    Завершающим этапом функционирования митохондрии является генерация АТФ , осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом с молекулярной массой 500 кДа. Этот комплекс, называемый АТФ-синтетазой, как раз и катализирует синтез АТФ путём конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ.

    АТФ-синтеза

    В структурно-функциональном плане АТФ-синтаза состоит из двух крупных фрагментов, обозначаемых символами F 1 и F 0 . Первый из них (фактор сопряжения F 1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы , которые вместе образуют гексамер (αβ) 3 , имеющий вид слегка приплюснутого шара. Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся осью симметрии третьего порядка с углом поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F 0 . Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F 1 .

    Мембранная часть АТФ-синтазы, называемая фактором сопряжения F 0 , представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F 0 входит одна белковая субъединица типа а , две копии субъединицы b , а также от 9 до 12 копий мелкой субъединицы c . Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F 1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух гидрофобных α-спиралей, соединённых друг с другом короткой гидрофильной петлёй, ориентированной в сторону F 1 , а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F 1 в сторону F 0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.

    Таким образом, в молекуле АТФ-синтазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору . «Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ) 3 , находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F 0 . Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ) 3 , соединяются с погружённым в мембрану кольцом из субъединиц c .

    Способность синтезировать АТФ - свойство единого комплекса F 0 F 1 , сопряжённого с переносом протонов водорода через F 0 к F 1 , в последнем из которых как раз и расположены каталитические центры, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтазы является протонный потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного транспорта.

    Сила, приводящая в движение «ротор» АТФ-синтазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 мВ и обеспечивается потоком протонов, протекающих через специальный канал в F 0 , расположенный на границе между субъединицами a и c . При этом путь переноса протонов включает в себя следующие структурные элементы:

    1. Два расположенных несоосно «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F 0 , а другой обеспечивает их выход в матрикс митохондрии;
    2. Кольцо из субъединиц c , каждая из которых в своей центральной части содержит протонируемую карбоксильную группу, способную присоединять H + из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с , обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с .

    Таким образом, каталитическая активность АТФ-синтазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх каталитических субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит дискретными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.

    Непосредственная функция синтеза АТФ локализована на β-субъединицах сопрягающего комплекса F 1 . При этом самым первым актом в цепи событий, приводящих к образованию АТФ, является связывание АДФ и фосфата с активным центром свободной β-субъединицы, находящейся в состоянии 1. За счёт энергии внешнего источника (тока протонов) в комплексе F 1 происходят конформационные изменения, в результате которых АДФ и фосфат становятся прочно связанными с каталитическим центром (состояние 2), где становится возможным образование ковалентной связи между ними, ведущей к образованию АТФ. На данной стадии АТФ-синтазы ферменту практически не требуется энергии, которая будет необходима на следующем этапе для освобождения прочно связанной молекулы АТФ из ферментативного центра. Поэтому следующий этап работы фермента заключается в том, чтобы в результате энергозависимого структурного изменения комплекса F 1 каталитическая β-субъединица, содержащая прочно связанную молекулу АТФ, перешла в состояние 3, в котором связь АТФ с каталитическим центром ослаблена. В результате этого молекула АТФ покидает фермент, а β-субъединица возвращается в исходное состояние 1, благодаря чему обеспечивается цикличность работы фермента.

    Работа АТФ-синтазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтетазу вызывает вращение отдельных субъединиц фактора сопряжения F 1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу - синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда адениловых нуклеотидов внутри митохондрий.

    Словарь синонимов

    Митохондрия. См. пластосома. (

    Двумембранная органелла - митохондрия - характерна для клеток эукариот. От функций митохондрий зависит работа организма в целом.

    Строение

    Митохондрии состоят из трёх взаимосвязанных компонентов:

    • наружной мембраны;
    • внутренней мембраны;
    • матрикса.

    Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

    Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

    Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок - крист.
    Они образованы:

    • липидами, проницаемыми только для кислорода, углекислого газа, воды;
    • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

    Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

    ТОП-4 статьи которые читают вместе с этой

    Между складками находится полужидкое вещество - матрикс.
    В состав матрикса входят:

    • ферменты (сотни разных видов);
    • жирные кислоты;
    • белки (67 % белков митохондрий);
    • митохондриальная кольцевая ДНК;
    • митохондриальные рибосомы.

    Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

    Рис. 1. Строение митохондрий.

    Ферментативные белки матрикса участвуют в окислении пирувата - пировиноградной кислоты в ходе клеточного дыхания.

    Значение

    Основная функция митохондрий в клетке - синтез АТФ, т.е. генерация энергии. В результате клеточного дыхания (окисления) образуется 38 молекул АТФ. Синтез АТФ происходит на основе окисления органических соединений (субстрата) и фосфорилирования АДФ. Субстратом для митохондрий являются жирные кислоты и пируват.

    Рис. 2. Образование пирувата в результате гликолиза.

    Общее описание процесса дыхания представлено в таблице.

    Где происходит

    Вещества

    Процессы

    Цитоплазма

    В результате гликолиза разлагается на две молекулы пировиноградной кислоты, которые поступают в матрикс

    Отщепляется ацетильная группа, которая присоединяется к коферменту А (КоА), образуя ацетил-кофермент-А (ацетил-КоА), и выделяется молекула углекислого газа. Ацетил-КоА также может формироваться из жирных кислот в отсутствии синтеза углеводов

    Ацетил-КоА

    Вступает в цикл Кребса или цикл лимонной кислоты (цикл трикарбоновых кислот). Начинается цикл с образования лимонной кислоты. Далее в результате семи реакций образуется две молекулы углекислого газа, НАДН и ФАДН2

    НАДН и ФАДН2

    Окисляясь, НАДН разлагается на НАД + , два высокоэнергетических электрона (е –) и два протона Н + . Электроны передаются в дыхательную цепь, содержащую три ферментных комплекса, на внутренней мембране. Прохождение электрона по комплексам сопровождается выделением энергии. Одновременно протоны высвобождаются в межмембранное пространство. Свободные протоны стремятся вернуться в матрикс, что создаёт электрический потенциал. При нарастании напряжения Н + устремляются внутрь через АТФ-синтазу - специальный белок. Энергия протонов используется для фосфорилирования АДФ и синтеза АТФ. Соединяясь с кислородом, Н + образует воду

    Рис. 3. Процесс клеточного дыхания.

    Митохондрии - органеллы, от которых зависит работа целого организма. Признаками нарушения функций митохондрий являются снижение скорости потребления кислорода, увеличение проницаемости внутренней мембраны, набухание митохондрии. Эти изменения происходят вследствие токсического отравления, инфекционного заболевания, гипоксии. 4.5 . Всего получено оценок: 74.

    Строение и функции ядра растительной клетки.

    Ядро обязательная часть эукариотической клетки. Это место хранения и воспроизведения наследственной информации. Ядро также служит центром управления обменом веществ и почти всех процессов, происходящих в клетке. Чаще всего в клетках имеется лишь одно ядро, редко - два или несколько. Форма его чаще все­го шаровидная или эллипсоидаль­ная. В молодых, особенно меристематических, клетках оно занимает центральное положение, но позднее обычно смещается к оболочке, от­тесняемое растущей вакуолью. Снаружи ядро покрыто двойной мембраной – ядерной оболочкой, пронизанной порами (поры ядра - динамичные образования, они могут открываться и закрываться; таким путем может осуществляться регуляция обмена между ядром и цитоплазмой) на краях которых наружная мембрана переходит во внутреннюю. Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы. Внутренняя мембрана может давать впячивания.

    Внутреннее содержимое ядра – кариоплазма с погруженными в нее хроматином и ядрышками, и рибосомами. Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

    Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке. Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму.

    Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК. Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах).

    Ядро – обязательная часть эукариотической клетки. Диаметр ядра колеблется от 5 до 20 мкм. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. (в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.).

    Химический состав ядра представлен, главным образом, нуклеиновыми кислотами и белками.

    Строение и функции митохондрий.

    Митохондрии или хондриосомы - «силовые» станции клетки, в них локализована большая часть реакций дыхания (аэробная фаза). В митохондриях происходит аккумуляция энергии дыхания в аденозинтрифосфате (АТФ). Энергия, запасаемая в АТФ, служит основным источником для физиологической деятельности клетки. Митохондрии обычно имеют удлиненную палочковидную форму длиной 4-7 мкм и диаметром 0,5-2 мкм. Число митохондрий в клетке может быть различным от 500 до 1000 и зависит от роли данного органа в процессах энергетического обмена.

    Химический состав митохондрий несколько колеблется. В основном это белково-липидные органеллы. Содержание белка в них составляет 60-65%, причем структурные и ферментативные белки содержатся примерно в равной пропорции, а также около 30% липидов. Очень важно, что митохондрии содержат нуклеиновые кислоты: РНК - 1 % и ДНК -0,5%. В митохондриях имеется не только ДНК, но и вся система синтеза белка, в том числе рибосомы.

    Митохондрии окружены двойной мембраной. Толщина мембран составляет 6-10 нм. Мембраны митохондрий на 70% состоят из белка. Фосфолипиды мембран представлены фосфатидтилхолином, фосфатидилэтаноламином, а также специфическими фосфолипидами, например, кардиолипином. Мембраны митохондрий не пропускают Н+ и служат барьером для их транспорта.

    Между мембранами находится заполненное жидкостью перимитохондриальное пространство. Внутреннее пространство митохондрий заполняет матрикс в виде студнеобразной полужидкой массы. В матриксе сосредоточены ферменты цикла Кребса. Внутренняя мембрана дает выросты - кристы в виде пластин и трубочек, они разделяют внутреннее пространство митохондрий на отдельные отсеки. Во внутренней мембране локализована дыхательная цепь (цепь переноса электронов).

    Похожие статьи