Центральный угол и описанный. Углы в окружности, центральный и вписанный. Свойства и способы нахождения

14.10.2019

Угол ABC - вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (рис. 330).

Теорема . Вписанный угол измеряется половиной дуги, на которую он опирается.

Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд содержится в половине дуги, на которую он опирается.

При доказательстве этой теоремы надо рассмотреть три случая.

Первый случай. Центр круга лежит на стороне вписанного угла (рис. 331).

Пусть ∠ABC - вписанный угол и центр круга О лежит на стороне BC. Требуется доказать, что он измеряется половиной дуги AC.

Соединим точку A с центром круга. Получим равнобедренный \(\Delta\)AOB, в котором АО = OB, как радиусы одного и того же круга. Следовательно, ∠A = ∠B.

∠AOC является внешним по отношению к треугольнику AOB, поэтому ∠AOC = ∠А + ∠В, а так как углы А и В равны, то ∠В составляет 1 / 2 ∠AOC.

Но ∠AOC измеряется дугой АС, следовательно, ∠В измеряется половиной дуги АС.

Например, если \(\breve{AC}\) содержит 60°18’, то ∠В содержит 30°9’.

Второй случай. Центр круга лежит между сторонами вписанного угла (рис. 332).

Пусть ∠ABD - вписанный угол. Центр круга О лежит между его сторонами. Требуется доказать, что ∠ABD измеряется половиной дуги АD.

Для доказательства проведём диаметр BC. Угол ABD разбился на два угла: ∠1 и ∠2.

∠1 измеряется половиной дуги АС, а ∠2 измеряется половиной дуги СD, следовательно, весь ∠АВD измеряется 1 / 2 \(\breve{AC}\) + 1 / 2 \(\breve{CD}\), т. е. половиной дуги АD.

Например, если \(\breve{AD}\) содержит 124°, то ∠В содержит 62°.

Третий случай. Центр круга лежит вне вписанного угла (рис. 333).

Пусть ∠MAD - вписанный угол. Центр круга О находится вне угла. Требуется доказать, что ∠MAD измеряется половиной дуги MD.

Для доказательства проведём диаметр AB. ∠MAD = ∠MAB - ∠DAB. Но ∠MAB измеряется 1 / 2 \(\breve{MB}\), а ∠DAB измеряется 1 / 2 \(\breve{DB}\).

Следовательно, ∠MAD измеряется 1 / 2 (\(\breve{MB} - \breve{DB})\), т. е. 1 / 2 \(\breve{MD}\).

Например, если \(\breve{MD}\) содержит 48° 38", то ∠MAD содержит 24° 19’ 8".

Следствия
1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги (рис. 334, а).

2. Вписанный угол, опирающийся на диаметр, - прямой, так как он опирается на половину окружности. Половина окружности содержит 180 дуговых градусов, значит, угол, опирающийся на диаметр, содержит 90 угловых градусов (рис. 334, б).

Центральным угол - это угол образованный двумя радиусами окружности . Пример центрального угла - угол AOB, ВОС, СОЕ и так далее.

О центральном угле и дуге , заключенной между его сторонами, говорят, что они соответствуют друг другу.

1. если центральные углы дуги равны.

2. если центральные углы не равны, то большему из них соответствует большая дуга .

Пусть AOB и COD два центральных угла, равных или неравных. Повернем сектор AOB вокруг центра в направлении, указанном стрелкой, настолько, чтобы радиус OA совместился с OC.Тогда, если центральные углы равны, то радиус OA совпадет с OD и дуга AB с дугой СD.

Значит эти дуги будут равны.

Если же центральные углы не равны, то радиус OB пойдет не по OD, а по какому-нибудь иному направлению, например, по OE или по OF. В том и другом случае большему углу, очевидно, соответствует и большая дуга.

Теорема, доказанная нами для одного круга, остается верной для равных кругов , потому что такие круги ничем друг от друга не отличаются, кроме своего положения.

Обратные предложения так же будет верным. В одном круге или в равных кругах:

1. если дуги равны, то и соответствующие им центральные углы равны.

2. если дуги не равны, то большей из них соответствует больший центральный угол .

В одном круге или в равных кругах центральные углы относятся, как соответствующие им дуги. Или перефразировав получаем, что центральный угол пропорционален соответствующей ему дуге.

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.

Центральный угол - это угол, вершина которого находится в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке - центральные и вписанные углы, а также их важнейшие свойства.

Итак, величина центрального угла равна угловой величине дуги, на которую он опирается . Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90°, то есть круга. Центральный угол, равный 60°, опирается на дугу в 60 градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу .

Также для решения задач нам понадобится понятие «хорда».

Равные центральные углы опираются на равные хорды.

1. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, - прямой.

2. Центральный угол на 36° больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен х, а вписанный угол, опирающийся на ту же дугу, равен у.

Мы знаем, что х = 2у.
Отсюда 2у = 36 + у,
у = 36.

3. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Пусть хорда АВ равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим α.
В треугольнике АОВ стороны АО и ОВ равны 1, сторона АВ равна . Нам уже встречались такие треугольники. Очевидно, что треугольник АОВ - прямоугольный и равнобедренный, то есть угол АОВ равен 90°.
Тогда дуга АСВ равна 90°, а дуга АКВ равна 360° - 90° = 270°.
Вписанный угол α опирается на дугу АКВ и равен половине угловой величины этой дуги, то есть 135°.

Ответ: 135.

4. Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Главное в этой задаче - правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»
Представьте, что вы сидите в точке С и вам необходимо видеть всё, что происходит на хорде АВ. Так, как будто хорда АВ - это экран в кинотеатре:-)
Очевидно, что найти нужно угол АСВ.
Сумма двух дуг, на которые хорда АВ делит окружность, равна 360°, то есть
5х + 7х = 360°
Отсюда х = 30°, и тогда вписанный угол АСВ опирается на дугу, равную 210°.
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол АСВ равен 105°.

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Похожие статьи