Большая энциклопедия нефти и газа. Продукты сгорания газа и контроль процесса горения

20.04.2019

Горение газа представляет собой сочетание следующих процессов:

· смешение горючего газа с воздухом,

· подогрев смеси,

· термическое разложение горючих компонентов,

· воспламенение и химическое соединение горючих компонентов с кислородом воздуха, сопровождаемое образованием факела и интенсивным тепловыделением.

Горение метана происходит по реакции:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Условия, необходимые для сгорания газа:

· обеспечение необходимого соотношения горючего газа и воздуха,

· нагрев до температуры воспламенения.

Если в газовоздушной смеси газа меньше нижнего предела воспламенения, то она не будет гореть.

Если в газовоздушной смеси больше газа чем верхний предел воспламенения, то она будет сгорать не полностью.

Состав продуктов полного сгорания газа:

· СО 2 – углекислый газ

· Н 2 О – водяные пары

* N 2 – азот (он не реагирует с кислородом во время горения)

Состав продуктов неполного сгорания газа:

· СО – угарный газ

· С – сажа.

Для сгорания 1 м 3 природного газа требуется 9.5м 3 воздуха. Практически расход воздуха всегда больше.

Отношение действительного расхода воздуха к теоретически необходимому расходу называется коэффициентом избытка воздуха: α = L/L t .,

Где: L - действительный расход;

L t - теоретически необходимый расход.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет 1.05 – 1.2.

2. Назначение, устройство и основные характеристики проточных водонагревателей .

Проточные газовые водонагреватели. Предназначены для нагрева воды до определенной температуры при водоразборе.. Проточные водонагреватели делятся по нагрузке тепловой мощности: 33600, 75600, 105000 кДж, по степени автоматизации - на высший и первый классы. К.п.д. водонагревателей 80%, содержание оксида не более 0,05%, температура продуктов сгорания за тягопрерывателем не менее180 0 С. Принцип основан на нагреве воды в период водоразбора.

Основными узлами проточных водонагревателей являются: газогорелочное устройство, теплообменник, система автоматики и газоотвод. Газ низкого давления подается в инжекционную горелку. Продукты сгорания проходят через теплообменник и отводятся в дымоход. Теплота сгорания передается протекающей через теплообменник воде. Для охлаждения огневой камеры служит змеевик, через который циркулирует вода, проходящая через калорифер. Газовые проточные водонагреватели оборудованы газоотводящими устройствами и тягопрерывателями, которые в случае кратковременного нарушения тяги предотвращают погасание пламени газогорелочного устройства. Для присоединения к дымоходу имеется дымоотводящий патрубок.

Газовый проточный водонагреватель –ВПГ. На передней стенке кожуха расположены: ручка управления газовым краном, кнопка включения электромагнитного клапана и смотровое окно для наблюдения за пламенем запальной и основной горелки. Вверху аппарата расположено дымоотводящее устройство, внизу- патрубки для присоединения аппарата к газовой и водяной системе. Газ поступает в электромагнитный клапан, газовый блокировочный кран водогазогорелочного блока осуществляет последовательное включение запальной горелки и подачу газа к основной горелке.

Блокировку поступления газа к основной горелке, при обязательной работе запальника, осуществляет электромагнитный клапан, работающий от термопары. Блокировка подачи газа в основную горелку в зависимости от наличия водоразбора, осуществляется клапаном, имеющим привод через шток от мембраны водяного блок- крана.

Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.
  • Кэфициент полезного действия котла.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %

Cтраница 1


Причины неполного сгорания связаны с химическим недожогом и механическим уносом топлива.  

Одной из причин неполного сгорания в условиях открытых воздушных пламен является образование трудносгораю. Нами проведены экспериментальные исследования конденсированных продуктов, образующихся в открытых воздушных пламенах различного класса горючих.  

Недостаток тяги может быть также причиной неполного сгорания газа из-за недостатка вторичного воздуха. Образующаяся при неполном сгорании окись углерода сама по себе может быть причиной взрыва газов в дымоходах или борове в случае подсоса в них воздуха.  

Схема естественной тяги.  

Недостаточная величина разрежения в топке может служить причиной неполного сгорания газа из-за недостатка вторичного воздуха при использовании диффузионных горелок или горелок с частичной инжекцией воздуха. Образующаяся при неполном сгорании окись углерода в смеси с воздухом может быть причиной взрыва газов в дымоходах или борове.  

Уменьшение разрежения в топке ниже допустимого предела является причиной неполного сгорания газа и образования окиси углерода, которая может взорваться в дымоходах или борове в случае подсоса в них воздуха.  

Наличие в топливе большого количества смолистых веществ может быть причиной неполного сгорания топлива и образования твердых нагаров, отлагающихся, по преимуществу, на сопле форсунки, распиливающей топливо. Отложение агаров ухудшает рас пылив аиие топлив в камере сгорания и может способствовать снижению или прекращению подачи топлива в цилиндры двигателя.  

Наличие в топливе большого количества смолистых веществ может быть причиной неполного сгорания топлива и образования твердых нагаров, отлагающихся преимущественно на сопле форсунки, распиливающей топливо, и в выхлопной системе двигателя. Отложения нагаров ухудшают процесс распиливания топлива в камере сгорания и могут способствовать снижению или прекращению подачи топлива в цилиндры двигателя.  

Потеря 7з возникает при наличии в уходящих газах продуктов неполного сгорания: окиси углерода СО, водорода Н2, метана СН4 и др. Причиной неполного сгорания топлива может быть недостаток воздуха в топке, низкая температура в ней, неудовлетворительное смешение частиц топлива с воздухом, неустойчивость процесса горения, малый объем топки.  

Предложенное приспособление дает возможность выполнять основную и самую трудную часть сожжения без наблюдения экспериментатора и, что самое главное, препятствует перегреву вещества, исключая таким образом возможность слишком быстрого испарения или разложения, являющихся обычно причиной неполного сгорания или взрыва в трубке для сожжения.  

Бурлаге и Брезе составили таблицу продуктов неполного сгорания, классифицируя их по различным причинам их образования, свойствам топлив и режиму двигателя, который скорее всего способствует их образованию. Следует помнить, что на эти соотношения сильно влияет конструкция двигателя и что при плохой его конструкции многие из причин неполного сгорания могут встречаться одновременно. Эта таблица (табл. 31) не может быть принята за непогрешимое руководство.  

Черный нагар может также быть вызван причинами, не связанными с правильностью подбора свечи к двигателю. Такой нагар может образоваться в результате длительной работы двигателя в режиме холостого хода или при малой частоте вращения коленчатого вала. Причиной образования черного нагара может быть также слишком богатая топливная смесь. Иногда причиной неполного сгорания топливной смеси и как следствие этого черного нагара бывает неисправность системы батарейного зажигания.  

Скорость продвижения зоны горения в направлении, перпендикулярном самой зоне, называется скоростью распространения пламени. Скорость распространения пламени характеризует быстроту нагрева газовоздушной смеси до температуры воспламенения. Наибольшую скорость распространения имеет пламя водорода, водяного газа (3 м / сек), наименьшую - пламя природного газа и П ропа НО-бутановой смеси. Большая скорость распространения пламени благоприятно влияет на полноту горения газа, а малая, наоборот, служит одной из причин неполного сгорания газа. Скорость распространения пламени увеличивается при применении газокислородной смеси вместо газовоздушной.  

При учете общего объема углекислоты измерительная бюретка должна вместе с тем служить коллектором, и объем ее должен быть достаточным для вмещения всего получившегося при сгорании газа. Чтобы устранить излишний, приток кислорода, пространство, в котором происходит сожжение, должно быть по возможности малым. Поэтому предложенные Kinder oM 2 спирали из медной сетки, которые вставляют в трубку для сожжения для поглощения окислов серы и которые, следовательно, уменьшают мертвое пространство, надо предпочесть промывным склянкам со смесью хромовой и серной кислот. Также и при проведении процесса сожжения нужно. Впуск газа можно начинать лишь тогда, когда введенная навеска настолько прогрелась, что горение железа начинается немедленно. Пока идет сожжение, не надо пускать кислорода больше, чем его расходуется. Правильную меру надо считать соблюденной, когда уровень жидкости в расширении измерительной бюретки падает во время сожжения лишь незначительно. Немедленному началу горения способствует высркгя температура нагрева; быстрое и полное сожжение обеспечивается применением отдающих кислород добавок. При соблюдении этих условий время сожжения значительно сокращается-даже для трудно сгорающих легированных материалов. Что касается применяемых фарфоровых трубок, то трубки с повышенным содержанием глинозема являются менее ломкими; всегда нужно следить за тем, чтобы охлаждение происходило постепенно. Дольше всего держатся трубки, которые все врем я нагреваются, как это, например, имеет место при непрерывном производстве. Против слишком сильного шлакования трубок помогает восстановление шлаков в струе водорода. Восстанавливающийся при этом металл в нагретом состоянии мягок и легко удаляется из трубки. Покрывание лодочек отчасти препятствует доступу кислорода, а это может быть причиною неполного сгорания. Хотя присадки сами по себе тоже мешают шлакообразованию, но зато они сильно разъедающе действуют на фарфор. Газопроницаемости при высоких температурах даже в неглазурованных с обеих сторон трубках не наблюдается; поэтому для сожжения можно пользоваться как глазурованными, так и негла зурованными трубками.  

Топливом для котельной является природный газ, поступающий с ГРС. Природный газ с давлением 1-2 МПа, температура, расход и давление которого регистрируются приборами коммерческого учета, поступает на первую ступень редуцирования. Давление после первой ступени редуцирования регулируется клапаном регулятора давления.

Далее топливный газ с давлением около 0,5 МПа поступает в трубное пространство подогревателя, теплоносителем которого является пар 0,3-0,6 МП. Температура топливного газа после подогревателя изменяется регулировочным клапаном, установленным на трубопроводе пара. После подогревателя давление топливного газа снижается второй ступенью редуцирования до 3-80 кПа.После второй ступени редуцирования газ поступает на горелки котлов через стандартные блоки газооборудования (СБГ). Перед СБГ каждого котла измеряется и регистрируется давление, расход, температура газа. Давление газа после СБГ каждого котла также регистрируется

5.3.2. Особенности процесса горения природного газа.

Выбор типа и количества газовых горелок, их размещение и организация процесса сгорания зависят от особенностей теплового и аэродинамического режима работы промышленной установки. Правильное решение этих задач определяет интенсивность технологического процесса и экономичность установки. Теоретические предпосылки и опыт работы свидетельствуют, что при проектировании новых газовых установок основные показатели их работы, как правило, могут быть улучшены. Однако здесь следует отметить, что неправильно выбранный способ сжигания газа и неудачное расположение горелок снижают производительность и к. п. д. установок.

При проектировании промышленных газовых установок задачи интенсификации технологического процесса и повышения эффективности использования топлива должны решаться с наименьшими материальными затратами и с соблюдением ряда других условий, таких как надежность работы, безопасность и т. д.

При сжигании природного газа в отличие от сжигания других видов топлива можно в широких пределах изменять характеристики факела. Поэтому он может быть использован практически для установок любого назначения. Здесь следует лишь помнить, что требуемая максимальная интенсификация технологического процесса, повышение к. п. д., а также удовлетворение других требований, предъявляемых к установке, не могут быть обеспечены только выбором той или иной газовой горелки, а будут достигнуты при правильном решении всего комплекса вопросов теплообмена и аэродинамики, начиная от подачи воздуха и газа и кончая удалением отработанных продуктов горения в атмосферу. Особое значение имеет начальная стадия процесса - организация сжигания газа.

Природный газ – это газ без цвета. Значительно легче воздуха. Присутствие газа в воздухе помещений, колодцах, шурфах более 20% вызывает удушье, головокружение, потерю сознания и смерть. По санитарным нормам природный газ (метан) относится к 4 классу опасности (вещество малоопасное). Малотоксичен, ядом не является.

Состав природного газа:

Метан 98,52%;

Этан 0,46%;

Пропан 0,16%;

Бутан 0,02%;

Азот 0,73%;

Углекислый газ 0,07%.

Если природный газ прошел все степени очистки, то его свойства мало отличаются от свойств метана. Метан – простейший элемент из ряда метановых углеводородов. Свойства метана:

Удельная теплота сгорания 7980 Ккал/м 3 ;

Сжижается при t°=-161°С, затвердевает при t°=-182°С;

Плотность метана – 0,7169 кг/м 3 (легче воздуха в 2 раза);

Температура воспламенения t°=645°С;

Температура горения t°=1500 ÷ 2000°С

Пределы взрываемости 5 ÷ 15%.

При взаимодействии с воздухом образуются высоко взрывоопасные смеси, способные взрываться, производить разрушения.

Горение любого топлива, в том числе и газового, является реакцией химического соединения его с кислородом и сопровождается выделением теплоты. Количество теплоты, получаемое при полном сгорании 1 м 3 (или 1 кг) газа, называется его теплотой сгорания. Различают теплоту сгорания низшую, в которой не учитывается скрытая теплота образования водяных паров, содержащихся в продуктах горения, и высшую, когда эта теплота учитывается. Разница между высшей и низшей теплотой сгорания зависит от количества водяных паров, образующихся при сгорании топлива, и составляет примерно 2500 кДж на 1 кг или 2000 кДж на 1 м 3 водяных паров.

Теплота сгорания различных видов топлив может значительно различаться. Так, например, дрова и торф имеют низшую теплоту сгорания до 12500, лучшие каменные угли-до 31000, а нефть около 40000 кДж/кг. Природный газ имеет низшую теплоту сгорания 40-44 МДж/кг.

Полное время сгорания  определяется временем  д смесеобразования (диффузионных процессов) и временем  к протекания химических реакций горения (кинетических процессов). С учетом того, что может происходить наложение этих стадий процесса, получаем  д + к.

При  к  д (горение протекающее одновременно со смесеобразованием в топке называется диффузионным , так как это смесеобразование включает процессы турбулентной (в заключительной стадии - молекулярной) диффузии).

При  д  к  к (горение заранее подготовленной смеси нередко условно называют кинетическим , оно определяется кинетикой химических реакций).

Когда  д и к соизмеримы, процесс горения называют смешанным.

Следующий этап за смесеобразованием - нагрев и воспламенение топлива. При смешивании струи горючего газа со струёй воздуха и постепенном повышении их температуры при некоторой температуре произойдет воспламенение смеси. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения.

Температура воспламенения не является физико-химической константой вещества, так как кроме природы горючего газа зависит от концентрации газа и окислителя, а также от интенсивности теплообмена между газовой смесью и окружающей средой.

Существуют верхний и нижний пределы концентрации газа и окислителя и вне этих пределов при данной температуре смеси не воспламеняются. При повышении температуры газо-воздушной смеси согласно закону Аррениуса происходит увеличение скорости реакции пропорционально е -Е/ RT , этой же величине пропорционально тепловыделение. Если тепло потери зоны горения, связанные с теплообменом с окружающей средой, превышают тепловыделение, то воспламенение и горение невозможны. Обычно разогрев протекает одновременно со смесеобразованием.

Газо-воздушная смесь, в которой содержание газа находится между нижним и верхним пределами воспламенения, является взрывоопасной. Чем шире диапазон пределов воспламенения (называемых также пределами взрываемости), тем более взрывоопасен газ. По химической сущности взрыв газо-воздушной (газокислородной) смеси - процесс очень быстрого (практически мгновенного) горения, приводящий к образованию продуктов горения, имеющих высокую температуру, и резкому возрастанию их давления. Расчетное избыточное давление при взрыве природного газа 0,75, пропана и бутана - 0,86, водорода-0,74, ацетилена-1,03 МПа. В практических условиях температура взрыва, не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.

В результате воспламенения и горения возникает пламя, которое является внешним проявлением интенсивных реакций окислителя вещества. Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части- сгоревший газ, через который пламя уже прошло, и несгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени.

Факелом называют поток, содержащий смесь воздуха, горящих газов, частиц топлива и продукты сгорания, в котором происходит разогрев, воспламенение и горение газообразного топлива.

При обычных температурах в топках (1000-1500 °С) углеводороды, включая метан, даже в очень малые промежутки времени в результате термического разложения дают заметные количества элементарного углерода. В результате появления в факеле элементарного углерода процесс горения в известной степени приобретает элементы гетерогенного, т. е. протекающего на поверхности твердых частиц. Наличие катализаторов (окислов железа, никеля) значительно ускоряет процесс разложения метана и других углеводородов.

Таким образом, в топке или рабочем пространстве печи между моментом ввода газа и воздуха и получением конечных продуктов горения в результате наложения процесса термического распада углеводородов и цепной реакции окисления наблюдается весьма сложная картина, характеризующаяся наличием как продуктов окисления СО 2 и Н 2 О, так и СО, Н 2 , элементарного углерода и продуктов неполного окисления (из последних особо важное значение имеет формальдегид). Соотношение между указанными компонентами будет зависеть от условий и длительности нагревания газа, предшествующего реакциям окисления.

При горении топлива происходят химические процессы окисления его горючих составляющих, сопровождающиеся интенсивным тепловыделением и быстрым подъемом температуры продуктов сгорания.

Различают гомогенное горение, протекающее в объеме, когда топливо и окислитель находятся в одинаковом агрегатном состоянии, и гетерогенное горение, происходящее на поверхности раздела фаз, когда горючее вещество и окислитель находятся в различных агрегатных состояниях.

Горение газообразного топлива является процессом гомогенным. При горении скорость прямого процесса несоизмеримо больше скорости обратного, поэтому обратной реакцией можно пренебречь. Напомним, что для гомогенной реакции горения выражение скорости прямой реакции будет иметь вид:

где -время; Т- абсолютная температура; К- универсальная газовая постоянная; k - константа скорости реакции, зависящая от природы реагирующих веществ, действия катализаторов, температуры; k 0 - эмпирическая константа; Е- энергия активации, характеризующая наименьшую избыточную энергию, которой должны обладать сталкивающиеся частицы, чтобы произошла реакция.

Из выражений (второе из них называют уравнением Аррениуса) следует, что скорость реакции возрастает с увеличением концентраций (давления в системе) и температуры и с уменьшением энергии активации. Экспериментальные измерения дают для энергии активации значительно меньшую величину, чем приведенные закономерности химической кинетики. Это объясняется тем, что процессы горения газов относятся к цепным реакциям и протекают через промежуточные стадии с непрерывным образованием активных центров (атомов или радикалов).

Например, при горении водорода (рис. 3) с помощью свободных атомов кислорода и радикалов гидроксила образуются три активных атома водорода вместо одного, имевшегося в начале рассматриваемого этапа реакции. Такое утроение происходит на каждом этапе, и в цепных реакциях лавинообразно нарастает количество активных центров. Кроме того, взаимодействие между неустойчивыми промежуточными продуктами идет гораздо быстрее, чем между молекулами.

Рис. 3. Схема цепной реакции горения водорода

Суммарная скорость реакции горения водорода определяется скоростью наиболее медленной реакции (выражаемой уравнением Н+О 2 ОН+Н 2) =kC н С о, где С н, С о - концентрации атомарного водорода и молекулярного кислорода.

Процессы окисления углеводородов, составляющих органическую часть природных и попутных газов, являются наиболее сложными. До сего времени отсутствуют четкие представления о кинетическом механизме протекания реакций, хотя можно с уверенностью сказать, что горение имеет цепной характер при наличии периода индукции и протекает с образованием многочисленных промежуточных продуктов частичного окисления и раз­ложения.

Приближенная схема стадийного горения метана может быть представлена набором следующих реакций:

Хотя начальные и конечные продукты реакции горения – газы, в промежуточных продуктах помимо газов может быть элементарный углерод в виде мельчайшей сажистой взвеси.

Скорость реакции горения окиси углерода зависит от концентраций в зоне реакции окиси углерода и водяных паров, а скорость цепного горения метана и других углеводородов - от концентраций атомарного водорода, кислорода и водяных паров.

Горение газового топлива представляет собой совокупность сложных аэродинамических, тепловых и химических процессов. Процесс горения газообразного топлива состоит из нескольких стадий: смешение газа с воздухом, нагрев полученной смеси до температуры воспламенения, зажигание и горение.

Александр Павлович Константинов

Главный инспектор по контролю безопасности ядерно и радиационно опасных объектов. Кандидат технических наук, доцент, профессор Российской академии естествознания.

Кухня с газовой плитой часто бывает главным источником загрязнения воздуха всей квартиры. И, что очень важно, это касается большинства жителей России. Ведь в России 90% городских и свыше 80% сельских жителей пользуются газовыми плитамиХата, З. И. Здоровье человека в современной экологической обстановке. - М. : ФАИР-ПРЕСС, 2001. - 208 с. .

В последние годы появились публикации серьёзных исследователей о высокой опасности газовых плит для здоровья. Медики знают, что в домах, где установлены газовые плиты, жители болеют чаще и дольше, чем в домах с электроплитами. Причём речь идёт о множестве разных болезней, а не только о заболеваниях дыхательных путей. Особенно заметно снижение уровня здоровья у женщин, детей, а также у пожилых и хронически больных людей, которые больше времени проводят дома.

Профессор В. Благов не зря назвал применение газовых плит «широкомасштабной химической войной против собственного народа».

Почему использование бытового газа вредит здоровью

Попытаемся ответить на этот вопрос. Есть несколько факторов, которые в сумме делают применение газовых плит опасным для здоровья.

Первая группа факторов

Эта группа факторов обусловлена самой химией процесса горения природного газа. Даже если бы бытовой газ сгорал полностью до воды и углекислого газа, это приводило бы к ухудшению состава воздуха в квартире, особенно на кухне. Ведь при этом из воздуха выжигается кислород, одновременно повышается концентрация углекислого газа. Но это не главная беда. В конце концов, тоже самое происходит с воздухом, которым дышит человек.

Гораздо хуже, что в большинстве случаев сгорание газа происходит не полностью, не на все 100%. Из-за неполного сгорания природного газа образуются гораздо более токсичные продукты. Например, оксид углерода (угарный газ), концентрация которого может многократно, в 20–25 раз превышать допустимую норму. А ведь это ведёт к головным болям, аллергии, недомоганиям, ослаблению иммунитетаЯковлева, М. А. А у нас в квартире газ. - Деловой экологический журнал. - 2004. - № 1(4). - С. 55. .

Помимо угарного газа в воздух выделяются сернистый газ, оксиды азота, формальдегид, а также бензпирен - сильный канцероген. В городах бензпирен попадает в атмосферный воздух от выбросов металлургических предприятий, тепловых электростанций (особенно угольных) и автомобилей (особенно старых). Но концентрация бензпирена даже в загазованном атмосферном воздухе не идёт в сравнение с его концентрацией в квартире. На рисунке показано, насколько больше мы получаем бензпирена, находясь на кухне.


Поступление бензпирена в организм человека, мкг/сут

Сравним первые два столбца. На кухне мы получаем вредных веществ в 13,5 раз больше, чем на улице! Для наглядности оценим поступление бензпирена в наш организм не в микрограммах, а в более понятном эквиваленте - числе выкуриваемых ежедневно сигарет. Так вот, если курильщик выкуривает в день одну пачку (20 сигарет), то на кухне человек получает в день эквивалент от двух до пяти сигарет. То есть хозяйка, имеющая газовую плиту, как бы немного «курит».

Вторая группа факторов

Эта группа связана с условиями эксплуатации газовых плит. Любой водитель знает, что нельзя находиться в гараже одновременно с автомобилем, у которого включён двигатель. Но ведь на кухне мы имеем как раз такой случай: сжигание углеводородного топлива в закрытом помещении! У нас отсутствует то устройство, которое есть у каждого автомобиля, - выхлопная труба. По всем правилам гигиены каждая газовая плита должна быть снабжена зонтом вытяжной вентиляции.

Особенно плохо обстоят дела в случае, если мы имеем маленькую кухню в малогабаритной квартире. Мизерная площадь, минимальная высота потолков, плохая вентиляция и весь день работающая газовая плита. А ведь при низких потолках продукты сгорания газа скапливаются в верхнем слое воздуха толщиной до 70–80 сантиметровБойко, А. Ф. Здоровье на 5+. - М. : Российская газета, 2002. - 365 с. .

Часто труд домохозяйки у газовой плиты сравнивают с вредными условиями труда на производстве. Это не совсем правильно. Расчёты показывают, что если кухня маленькая, при этом отсутствует хорошая вентиляция, то мы имеем дело с особо вредными условиями труда. Типа металлурга, обслуживающего коксохимические батареи.

Как уменьшить вред от газовой плиты

Как же нам быть, если всё настолько плохо? Может быть, действительно стоит избавиться от газовой плиты и установить электрическую или индукционную? Хорошо, если есть такая возможность. А если нет? На этот случай имеется несколько простых правил. Достаточно их соблюдать, и вы сможете уменьшить вред здоровью от газовой плиты в десятки раз. Перечислим эти правила (большая их часть - рекомендации профессора Ю. Д. Губернского)Ильницкий, А. Пахнет газом. - Будь здоров!. - 2001. - № 5. - С. 68–70. .

  1. Необходимо установить над плитой вытяжной зонт с воздухоочистителем. Это самый действенный приём. Но даже если по каким-то причинам вы не можете этого сделать, то остальные семь правил в сумме тоже позволят значительно уменьшить загазованность воздуха.
  2. Следите за полнотой сгорания газа. Если вдруг цвет газа стал не таким, каким должен быть по инструкции, немедленно вызывайте газовиков для регулирования разладившейся горелки.
  3. Не загромождайте плиту лишней посудой. Посуда должна стоять только на работающих горелках. В этом случае будет обеспечиваться свободный доступ воздуха к горелкам и более полное сгорание газа.
  4. Одновременно в работе лучше использовать не более двух горелок или духовку и одну горелку. Даже если у вашей плиты четыре горелки, одновременно лучше включать максимум две.
  5. Максимальное время непрерывной работы газовой плиты - два часа. После этого необходимо сделать перерыв и хорошенько проветрить кухню.
  6. Во время работы газовой плиты двери на кухню должны быть закрыты, а форточка открыта. Это обеспечит удаление продуктов сгорания через улицу, а не через жилые комнаты.
  7. После окончания работы газовой плиты целесообразно проветрить не только кухню, но и всю квартиру. Желательно сквозное проветривание.
  8. Никогда не используйте газовую плиту для обогрева и сушки белья. Вы же не станете для этой цели разжигать костёр посреди кухни, верно?
Похожие статьи