Расстояние между скрещивающимися прямыми – определение и примеры нахождения. Расстояние между скрещивающимися прямыми

14.10.2019

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA 1 B 1 C 1 D 1 найдите расстояние между прямыми BA 1 и DB 1 .

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB 1 (точку O ) проведем прямую, параллельную прямой A 1 B . Точки пересечения данной прямой с ребрами BC и A 1 D 1 обозначаем соответственно N и M . Прямая MN лежит в плоскости MNB 1 и параллельна прямой A 1 B , которая в этой плоскости не лежит. Это означает, что прямая A 1 B параллельна плоскости MNB 1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A 1 B до плоскости MNB 1 . Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA , ось Y — вдоль ребра BC , ось Z — вдоль ребра BB 1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB 1 в данной системе координат. Для этого определяем сперва координаты точек M , N и B 1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB 1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле.

Приведем без доказательств сведения из стереометрии, необходимые для решения названной задачи.

1. Общим перпендикуляром двух скрещивающихся прямых называется отрезок,

концы которого лежат на данных прямых и который перпендикулярен к ним.

2. Общий перпендикуляр двух скрещивающихся прямых существует и единствен.

3. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра.

Задача. Даны скрещивающиеся прямые АВ и CD. Определить расстояние между прямыми (рис. 8.7).

Решение задачи выполним методом замены плоскостей проекций. Проекционный алгоритм решения в этом случае может быть следующим:

1) вводится новая система плоскостей проекций

П 1 , П 4 , таким образом, что П 4 // АВ, т.е. на КЧ

строится ось х 1 // А 1 В 1 ;

2) на П 4 строятся новые проекции А 4 В 4 (НВ отрезка АВ) и C 4 D 4 ;

3) вводится новая система плоскостей П 4 , П 5 с

осью х 2 ^ А 4 В 4 такая, что П 5 ^ AB;

4) на П 5 строятся новые проекции – отрезок C 5 D 5 и точка А 5 = В 5 ;

5) строится перпендикуляр E 5 F 5 ^ C 5 D 5 из точки

Е 5 (= А 5 = В 5);

В итоге, по смыслу построений в методе замены плоскостей проекций и приведенному понятию расстояния между скрещивающимися прямыми, получаем, что r(E 5 , C 5 D 5) = r(AB, CD). Для полноты решения задачи необходимо вернуть отрезок EF длиной r(AB, CD) на исходные плоскости проекций:

1) строим E 4 F 4 // x 2 ;

2) строим E 1 F 1 по проекциям E 5 F 5 , E 4 F 4 ; E 2 F 2 по проекциям E 4 F 4 , E 1 F 1 .

Отрезки E 2 F 2 , E 1 F 1 представляют собой основные проекции отрезка EF.

В стереометрии известно еще одно определение рассматриваемого расстояния: расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведенными через эти прямые.

Такое определение расстояния позволяет предложить более короткий путь решения рассматриваемой задачи. Пусть AB и CD – скрещивающиеся прямые (рис. 8.8). Переместим в пространстве прямую АВ параллельно самой себе в положение А 1 В 1 до пересечения с CD. Если взять теперь на прямой АВ любую точку Е и опустить из этой точки перпендикуляр ЕЕ 1 на образовавшуюся плоскость Σ(CD, A 1 B 1), то длина этого перпендикуляра будет искомым расстоянием r(AB,CD). Рассмотрим проекционное решение задачи.

Задача. Даны скрещивающиеся прямые АВ и CD (рис. 8.9). Определить расстояние между ними.

Решение задачи может быть следующим.

1. Перенесем прямую АВ параллельно самой себе до пересечения с CD. Таких

переносов может быть бесконечное множество. Один из переносов, например

А 1 В 1 ® А 1 1 В 1 1 , А 2 В 2 = А 2 1 В 2 1 – наиболее простой для данного КЧ вариант.

2. Получаем новые условия задачи: задана плоскость Σ (А 1 В 1 , CD), где А 1 В 1 Ç CD и точка А; требуется определить расстояние r(А, Σ). Решение задачи выполняется методом замены плоскостей проекций по ранее изложенной схеме проекционного решения.

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

Статья нацелена на нахождение расстояния между скрещивающимися прямыми методом координат. Будет рассмотрено определение расстояния между этими прямыми, получим алгоритм при помощи которого преобразуем нахождение расстояния между скрещивающимися прямыми. Закрепим тему решением подобных примеров.

Yandex.RTB R-A-339285-1

Предварительно необходимо доказать теорему, которая определяет связь между заданными скрещивающимися прямыми.

Раздел взаимного расположения прямых в пространстве говорит о том, что если две прямые называют скрещивающимися, если их расположение не в одной плоскости.

Теорема

Через каждую пару скрещивающихся прямых может проходить плоскость, параллельная данной, причем только одна.

Доказательство

По условию нам даны скрещивающиеся прямые a и b . Необходимо доказать проходимость единственной плоскости через прямую b , параллельную данной прямой a . Аналогичное доказательство необходимо применять для прямой a , через которую проходит плоскость, параллельная данной прямой b .

Для начала необходимо отметить точку Q на прямой b . Если следовать из определения параллельности прямых, то получаем, что через точку пространства можно провести прямую, параллельную заданной прямой, причем только одну. Значит, через точку Q проходит только одна прямая, параллельная прямой a . Примем обозначение а а 1 .

Раздел способов задания плоскости было говорено о том, что прохождение единственной плоскости возможно через две пересекающиеся прямые. Значит, получаем, что прямые b и а 1 – пересекающиеся прямые, через которые проходит плоскость, обозначаемая χ .

Исходя из признака параллельности прямой с плоскостью, можно сделать вывод, что заданная прямая a параллельна относительно плоскости χ , потому как прямая a параллельна прямой а 1 , расположенной в плоскости χ .

Плоскость χ является единственной, так как прямая, проходящая через заданную прямую, находящуюся в пространстве, параллельна заданной прямой. Рассмотрим на рисунке, предоставленном ниже.

При переходе от определения расстояния между скрещивающимися прямыми определяем расстояние через расстояние между прямой и параллельной ей плоскостью.

Определение 1

Называют расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

То есть расстояние между прямой и плоскостью является расстоянием от заданной точки к плоскости. Тогда применима формулировка определения расстояния между скрещивающимися прямыми.

Определение 2

Расстоянием между скрещивающимися прямыми называют расстояние от некоторой точки скрещивающихся прямых к плоскости, проходящей через другую прямую, параллельную первой прямой.

Произведем подробное рассмотрение прямых a и b . Точка М 1 располагается на прямой a , через прямую b проводится плоскость χ , параллельная прямой a . Из точки М 1 проводим перпендикуляр М 1 Н 1 к плоскости χ . Длина этого перпендикуляра является расстоянием между скрещивающимися прямыми a и b . Рассмотрим на рисунке, приведенном ниже.

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения

Расстояния между скрещивающимися прямыми находятся при построении отрезка. Искомое расстояние равняется длине этого отрезка. По условию задачи его длина находится по теореме Пифагора, по признакам равенства или подобия треугольников или другим.

Когда имеем трехмерное пространство с системой координат О х у z с заданными в ней прямыми a и b , то вычисления следует проводить, начиная с расстояния между заданными скрещивающимися при помощи метода координат. Произведем подробное рассмотрение.

Пусть по условию χ является плоскостью, проходящей через прямую b , которая параллельна прямой a . Искомое расстояние между скрещивающимися прямыми a и b равняется расстоянию от точки М 1 , расположенной на прямой a , к плоскости _ χ . Для того, чтобы получить нормальное уравнение плоскости χ , необходимо определить координаты точки M 1 (x 1 , y 1 , z 1) , расположенной на прямой a . Тогда получим cos α · x + cos β · y + cos γ · z - p = 0 , которое необходимо для определения расстояния M 1 H 1 от точки M 1 x 1 , y 1 , z 1 к плоскости χ . Вычисления производятся по формуле M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Необходимое расстояние равняется искомому расстоянию между скрещивающимися прямыми.

Данная задача предполагает получение координат точки М 1 , которая располагается на прямой a , нахождение нормального уравнения плоскости χ .

Определение координат точки М 1 необходимо и возможно при знании основных видов уравнений прямой в пространстве. Чтобы получить уравнение плоскости χ , необходимо остановиться подробней на алгоритме вычисления.

Если координаты x 2 , y 2 , z 2 будут определены при помощи точки М 2 , через которую проведена плоскость χ , получаем нормальный вектор плоскости χ в виде вектора n → = (A , B , C) . Следуя из этого, можно записать общее уравнение плоскости χ в виде A · x - x 2 + B · (y - y 2) + C · (z - z 2) = 0 .

Вместо точки М 2 может быть взята любая другая точка, принадлежащая прямой b , потому как плоскость χ проходит через нее. Значит, координаты точки М 2 найдены. Необходимо перейти к нахождению нормального вектора плоскости χ .

Имеем, что плоскость χ проходит через прямую b , причем параллельна прямой a . Значит, нормальный вектор плоскости χ перпендикулярен направляющему вектору прямой a , обозначим a → , и направляющему вектору прямой b , обозначим b → . Вектор n → будет равняться векторному произведению a → и b → , что значит, n → = a → × b → . После определения координат a x , a y , a z и b x , b y , b z направляющих векторов заданных прямых a и b , вычисляем

n → = a → × b → = i → j → k → a x a y a z b x b y b z

Отсюда находим значение координат A , B , C нормального вектора к плоскости χ .

Знаем, что общее уравнение плоскости χ имеет вид A · (x - x 2) + B · (y - y 2) + C · (z - z 2) = 0 .

Необходимо привести уравнение к нормальному виду cos α · x + cos β · y + cos γ · z - p = 0 . После чего нужно произвести вычисления искомого расстояния между скрещивающимися прямыми a и b , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p .

Чтобы найти расстояние между скрещивающимися прямыми a и b , необходимо следовать алгоритму:

  • определение координат (x 1 , y 1 , z 1) и x 2 , y 2 , z 2 точек М 1 и М 2 , расположенных на прямых a и b соответственно;
  • получение координат a x , a y , a z и b x , b y , b z , принадлежащим направляющим векторам прямых a и b ;
  • нахождение координат A , B , C , принадлежащим вектору n → на плоскости χ , проходящей через прямую b , расположенную параллельно a , по равенству n → = a → × b → = i → j → k → a x a y a z b x b y b z ;
  • запись общего уравнения плоскости χ в виде A · x - x 2 + B · (y - y 2) + C · (z - z 2) = 0 ;
  • приведение полученного уравнения плоскости χ к уравнению нормального вида cos α · x + cos β · y + cos γ · z - p = 0 ;
  • вычисление расстояния M 1 H 1 от M 1 x 1 , y 1 , z 1 к плоскости χ , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p .
Пример 1

Имеются две скрещивающиеся прямые в прямоугольной системе координат О х у z трехмерного пространства. Прямая a определена параметрическим уравнением прямой в пространстве x = - 2 y = 1 + 2 · λ z = 4 - 3 · λ , прямая b при помощи канонического уравнения прямой в пространстве x 1 = y - 1 - 2 = z + 4 6 . Найти расстояние между скрещивающимися прямыми.

Решение

Понятно, что прямая а пересекает точку M 1 (- 2 , 1 , 4) с направляющим вектором a → = (0 , 2 , - 3) , а прямая b пересекает точку M 2 (0 , 1 , - 4) с направляющим вектором b → = (1 , - 2 , 6) .

Для начала следует произвести вычисление направляющих векторов a → = (0 , 2 , - 3) и b → = (1 , - 2 , 6) по формуле. Тогда получаем, что

a → × b → = i → j → k → 0 2 - 3 1 - 2 6 = 6 · i → - 3 · j → - 2 · k →

Отсюда получаем, что n → = a → × b → - это вектор плоскости χ , который проходит через прямую b параллельно a с координатами 6 , - 3 , - 2 . Получим:

6 · (x - 0) - 3 · (y - 1) - 2 · (z - (- 4)) = 0 ⇔ 6 x - 3 y - 2 z - 5 = 0

Находим нормирующий множитель для общего уравнения плоскости 6 x - 3 y - 2 z - 5 = 0 . Вычислим по формуле 1 6 2 + - 3 2 + - 2 2 = 1 7 . Значит, нормальное уравнение примет вид 6 7 x - 3 7 y - 2 7 z - 5 7 = 0 .

Необходимо воспользоваться формулой, чтобы найти расстояние от точки M 1 - 2 , 1 , 4 до плоскости, заданной уравнением 6 7 x - 3 7 y - 2 7 z - 5 7 = 0 . Получаем, что

M 1 H 1 = 6 7 · (- 2) - 3 7 · 1 - 2 7 · 4 - 5 7 = - 28 7 = 4

Отсюда следует, что искомым расстоянием является расстояние между заданными скрещивающимися прямыми, является значение 4 .

Ответ: 4 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Цели и задачи:

  • образовательная – формирование и развитие у учащихся пространственных представлений; выработка навыков решения задач на нахождение расстояния между скрещивающимися прямыми
  • воспитательная - воспитывать волю и настойчивость для достижения конечных результатов при нахождении расстояния между скрещивающимися прямыми; воспитывать любовь и интерес к изучению математики.
  • развивающая – развитие у учащихся логического мышления, пространственных представлений, развитие навыков самоконтроля.

Проект соответствует следующим пунктам тематического учебного плана школьного предмета.

  1. Скрещивающиеся прямые.
  2. Признак параллельности прямой и плоскости
  3. Ортогональная проекция в пространстве.
  4. Объем многогранников.

Вступление.

Скрещивающиеся прямые - это удивительно!

Если бы их не было, жизнь была бы во сто крат менее интересной. Так и хочется сказать, что если и стереометрию стоит изучать, то из-за того, что в ней есть скрещивающиеся прямые. Сколько у них глобальных, интереснейших свойств: в архитектуре, в строительстве, в медицине, в природе.

Так хочется, чтобы наше удивление перед уникальностью скрещивающихся прямых передалось и вам. Но как это сделать?

Может быть ответом на этот вопрос будет наш проект?

Известно, что длина общего перпендикуляра скрещивающихся прямых равна расстоянию между этими прямыми.

Теорема: Расстояние между двумя скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Следующая теорема дает один из способов нахождения расстояния и угла между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми равно расстоянию от точки, являющейся проекцией одной из данных прямых на перпендикулярную ей плоскость, до проекции другой прямой на эту же плоскость.

Основополагающий вопрос:

А можно найти расстояние между скрещивающимися прямыми без построения их общего перпендикуляра?

Рассмотрим задачу с кубом.

Почему с кубом? Да потому что в кубе скрыта вся геометрия, в том числе и геометрия скрещивающихся прямых.

Задача.

Ребро куба равно a . Найти расстояние между прямыми, на которых лежат скрещивающиеся диагонали двух смежных граней куба.

Применим различные методы исследования к данной задаче.

  • по определению;
  • методом проекций;
  • методом объемов;
  • методом координат.

Исследования.

Класс делится на группы по методу исследования задачи. Перед каждой группой стоит задача – показать и доказать применение данного метода для нахождения расстояния между скрещивающимися прямыми. Завершающим этапом исследования задачи являются защита проектов в виде презентаций, публикаций или сайтов. Ребята и учитель имеют возможность оценить проект каждой группы по критериям, разработанных для публикаций, презентаций.

Метод объемов.

  • построить пирамиду, в которой высота, опущенная из вершины этой пирамиды на плоскость основания, является искомым расстоянием между двумя скрещивающимися прямыми;
  • доказать, что эта высота и есть искомое расстояние;
  • найти объём этой пирамиды двумя;
  • способами и выразить эту высоту;

Этот метод очень интересен своей нестандартностью, красотой и индивидуальностью. Метод объёмов способствует развитию пространственного воображения и умению мысленно создавать представления о форме фигур.

В результате дополнительных построений мы получили пирамиду DAB 1 C.

В пирамиде DAB 1 C, высота, опущенная из вершины D на плоскость основания AB 1 C будет являться искомым расстоянием между скрещивающимися прямыми АС и DC 1 .

Рассмотрим пирамиду Вывод: Рассмотрим эту же пирамиду, но уже с вершиной в точке D:

Учитывая, что V1 = V2 , получим d=

Искомое расстояние.

Метод проекций.

  1. Выбираем плоскость, перпендикулярную одной из скрещивающихся прямых.
  2. Проецируем каждую прямую на эту плоскость.
  3. Расстояние между проекциями будет расстоянием между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми можно определить как расстояние между ортогональными проекциями этих прямых на плоскость проекций.

Использование определения скрещивающихся прямых.

Дополнительные построения: А1В, ВD, AK.

А 1 О ВD, ОС BD

BD пересекающимся прямым А 1 О и ОС

Похожие статьи