Преобразование функций и действия над ними. Преобразование графиков

14.10.2019

Гипотеза: Если изучить движение графика при образовании уравнения функций то можно заметить что все графики подчиняются общим закономерностям поэтому можно сформулировать общие законы вне зависимости от функций, что позволит не только облегчить построение графиков различных функций, но и использовать их при решении задач.

Цель: Изучить движение графиков функций:

1)Задача изучение литературы

2) Научится строить графики различных функций

3) Научится преобразовывать графики линейных функций

4) Рассмотреть вопрос применения графиков при решении задач

Объект исследования: Графики функций

Предмет исследования: Движения графиков функций

Актуальность: Построение графиков функций, как правило занимает очень много времени и требует внимательности со стороны ученика, но зная правила преобразования графиков функций и графики основных функций можно достаточно быстро и легко построить графики функций что позволит не только выполнять задания на построения графиков функций, но и решать связанные с ним задачи (на нахождения максимально (минимально высоты времени и точки встречи))

Данный проект полезен всем ученикам школы.

Обзор литературы :

В литературе рассматриваются способы построения графика различных функций, а так же приведены примеры преобразования графиков этих функций. Графики практически всех основных функций используются в различных технических процессах, что позволяет более наглядно представить течение процесса и спрограммировать результат

Постоянная функция. Эта функция задана формулой у = b, где b – некоторое число. Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку (0; b) на оси ординат. Графиком функции у = 0 является ось абсцисс.

Виды функции 1Прямая пропорциональность. Эта функция задана формулой у = kx, где коэффициент пропорциональности k ≠ 0. Графиком прямой пропорциональности является прямая, проходящая через начало координат.

Линейная функция. Такая функция задана формулой у = kx + b, где k и b – действительные числа. Графиком линейной функции является прямая.

Графики линейных функций могут пересекаться или быть параллельными.

Так, прямые графиков линейных функций у = k 1 x + b 1 и у = k 2 x + b 2 пересекаются, если k 1 ≠ k 2 ; если же k 1 = k 2 , то прямые параллельны.

2Обратная пропорциональность – это функция, которая задана формулой у = k/x, где k ≠ 0. K называется коэффициентом обратной пропорциональности. Графиком обратной пропорциональности является гипербола.

Функция у = х 2 представлена графиком, получившим название парабола: на промежутке [-~; 0] функция убывает, на промежутке функция возрастает.

Функция у = х 3 возрастает на всей числовой прямой и графически представлена кубической параболой.

Степенная функция с натуральным показателем. Эта функция задана формулой у = х n , где n – натуральное число. Графики степенной функции с натуральным показателем зависят от n. Например, если n = 1, то графиком будет прямая (у = х), если n = 2, то графиком будет парабола и т.д.

Степенная функция с целым отрицательным показателем представлена формулой у = х -n , где n – натуральное число. Данная функция определена при всех х ≠ 0. График функции также зависит от показателя степени n.

Степенная функция с положительным дробным показателем. Эта функция представлена формулой у = х r , где r – положительная несократимая дробь. Данная функция также не является ни четной, ни нечетной.

График-линия которая отображает взаимосвязь зависимой и независимой переменных на координатной плоскости. График служит для наглядного отображения этих элементов

Независимая переменная это переменная которая может принимать любые значения в области определения функций (где данная функция имеет смысл(нельзя делить на нуль))

Чтобы построить график функций необходимо

1)Найти ОДЗ (область допустимых значений)

2)взять несколько произвольных значений для независимой переменной

3)Найти значен6ие зависимой переменной

4)Построить координатную плоскость отметить на ней данные точки

5) Соединить их линии при необходимости исследовать полученный график Преобразование графиков элементарных функций.

Преобразование графиков

В чистом виде основные элементарные функции встречаются, к сожалению, не так часто. Гораздо чаще приходится иметь дело с элементарными функциями, полученными из основных элементарных при помощи добавления констант и коэффициентов. Графики таких функций можно строить, применяя геометрические преобразования к графикам соответствующих основных элементарных функций (или переходить к новой системе координат). К примеру, квадратичная функция формула представляет собой квадратичную параболу формула, сжатую втрое относительно оси ординат, симметрично отображенную относительно оси абсцисс, сдвинутую против направления этой оси на 2/3 единицы и сдвинутую по направлению оси ординат на 2 единицы.

Давайте разберемся в этих геометрических преобразованиях графика функции пошагово на конкретных примерах.

С помощью геометрических преобразований графика функции f(x) может быть построен график любой функции вида формула, где формула - коэффициенты сжатия или растяжения вдоль осей oy и ox соответственно, знаки «минус» перед коэффициентами формула и формула указывают на симметричное отображение графика относительно координатных осей, а и b определяют сдвиг относительно осей абсцисс и ординат соответственно.

Таким образом, различают три вида геометрических преобразований графика функции:

Первый вид - масштабирование (сжатие или растяжение) вдоль осей абсцисс и ординат.

На необходимость масштабирования указывают коэффициенты формулы отличные от единицы, если число меньше 1 , то происходит сжатие графика относительно oy и растяжение относительно ox , если число больше 1, то производим растяжение вдоль оси ординат и сжатие вдоль оси абсцисс.

Второй вид - симметричное (зеркальное) отображение относительно координатных осей.

На необходимость этого преобразования указывают знаки «минус» перед коэффициентами формулы (в этом случае симметрично отображаем график относительно оси ox) и формула (в этом случае симметрично отображаем график относительно оси oy). Если знаков «минус» нет, то этот шаг пропускается.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Преобразование графиков функции является одним из основных математических понятий, непосредственно связанные с практической деятельностью. Преобразование графиков функций впервые встречается в алгебре 9 класса при изучении темы «Квадратичная функция». Квадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами. Так же многие математические понятия рассматриваются графическими методами, например в 10 - 11 классах исследование функции дает возможность найти область определения и область значения функции, области убывания или возрастания, асимптоты, интервалы знакопостоянства и др. Так же этот немаловажный вопрос выносится на ГИА. Отсюда следует, построение, и преобразование графиков функции является одной из главных задач обучения математике в школе.

Однако для построения графиков многих функций можно использовать ряд методов, облегчающих построение. Выше сказанное определяет актуальность темы исследования.

Объектом исследования является изучение преобразование графиков в школьной математике.

Предмет исследования - процесс построение и преобразование графиков функции в общеобразовательной школе.

Проблемный вопрос : можно ли построить график не знакомой функции, имея навык преобразования графиков элементарных функций?

Цель: построение графиков функции в незнакомой ситуации.

Задачи:

1. Проанализировать учебный материал по исследуемой проблеме. 2. Выявить схемы преобразования графиков функции в школьном курсе математики. 3. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции. 4.Уметь применять данную теории в решении задач.

Необходимые начальные знания, умения, навыки:

Определять значение функции по значению аргумента при различных способах задания функции;

Строить графики изученных функций;

Описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

Описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Основная часть

Теоретическая часть

В качестве исходного графика функции y = f(x) выберу квадратичную функциюy = x 2 . Рассмотрю случаи преобразования данного графика, связанные с изменениями формулы, задающей эту функцию и сделаю выводы для любой функции.

1. Функция y = f(x) + a

В новой формуле значения функции (ординаты точек графика) изменяются на число a, по сравнению со «старым» значением функции. Это приводит к параллельному переносу графика функции вдоль оси OY:

вверх, если a > 0; вниз, если a < 0.

ВЫВОД

Таким образом график функции y=f(x)+a, получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси ординат на a единиц вверх, если a > 0, и на a единиц вниз, если a < 0.

2. Функция y = f(x-a),

В новой формуле значения аргумента (абсциссы точек графика) изменяются на число a, по сравнению со «старым» значением аргумента. Это приводит к параллельному переносу графика функции вдоль оси OX: вправо, если a < 0, влево, если a >0.

ВЫВОД

Значит график функции y= f(x - a), получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси абсцисс на a единиц влево, если a > 0, и на a единиц вправо, если a < 0.

3. Функция y = k f(x), где k > 0 и k ≠ 1

В новой формуле значения функции (ординаты точек графика) изменяются в k раз, по сравнению со «старым» значением функции. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОY в k раз, если k > 1, 2) «сжатию» к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

ВЫВОД

Следовательно: чтобы построить график функции y = kf(x), где k > 0 и k ≠ 1 нужно ординаты точек заданного графика функции y = f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОY в k раз, если k > 1; сжатием к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.

4. Функция y = f(kx), где k > 0 и k ≠ 1

В новой формуле значения аргумента (абсциссы точек графика) изменяются в k раз, по сравнению со «старым» значением аргумента. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1; 2) «сжатию» к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

ВЫВОД

И так: чтобы построить график функции y = f(kx), где k > 0 и k ≠ 1 нужно абсциссы точек заданного графика функции y=f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1, сжатием к точке (0; 0) вдоль оси OX. в k раз, если k > 1.

5. Функция y = - f (x).

В данной формуле значения функции (ординаты точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси Ох.

ВЫВОД

Для построения графика функции y = - f (x) необходимо график функции y= f(x)

симметрично отразить относительно оси OX. Такое преобразование называется преобразованием симметрии относительно оси OX .

6. Функция y = f (-x).

В данной формуле значения аргумента (абсциссы точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси ОY.

Пример для функции у = - х² это преобразование не заметно, т. к. данная функция чётная и график после преобразования не меняется. Это преобразование видно, когда функция нечётная и когда ни чётная и ни нечётная.

7. Функция y = |f(x)|.

В новой формуле значения функции (ординаты точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными ординатами (т.е. находящихся в нижней полуплоскости относительно оси Ох) и симметричному отображению этих частей относительно оси Ох.

8. Функция y= f (|x|).

В новой формуле значения аргумента (абсциссы точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными абсциссами (т.е. находящихся в левой полуплоскости относительно оси ОY) и замещению их частями исходного графика, симметричными относительно оси ОY.

Практическая часть

Рассмотрим несколько примеров применения вышеизложенной теории.

ПРИМЕР 1.

Решение. Преобразуем данную формулу:

1) Построим график функции

ПРИМЕР 2.

Построить график функции, заданной формулой

Решение. Преобразуем данную формулу, выделив в данном квадратном трехчлене квадрат двучлена:

1) Построим график функции

2) Выполним параллельный перенос построенного графика на вектор

ПРИМЕР 3.

ЗАДАНИЕ ИЗ ЕГЭПостроение графика кусочной функции

График функции График функции y=|2(x-3)2-2|; 1

В зависимости от условий протекания физических процессов одни величины принимают постоянные значения и называются константами, другие - изменяются в определенных условиях и называются переменными.

Внимательное изучение окружающей среды показывает, что физические величины зависимы друг от друга, т. е. изменение одних величин влечет за собой изменение других.

Математический анализ занимается изучением количественных соотношений взаимно -изменяющихся величин, отвлекаясь от конкретного физического смысла. Одним из основных понятий математического анализа есть понятие функции.

Рассмотрим элементы множества и элементы множества
(рис. 3.1).

Если устанавливается некоторое соответствие между элементами множеств
и в виде правила , то тем самым отмечают, что определяется функция
.

Определение 3.1. Соответствие, которое связывает с каждым элементомне пустого множества
некоторый, вполне определенный, элементне пустого множества ,называется функцией или отображением
в .

Символически отображение
в записывается следующим образом:

.

При этом множество
называется областью определения функции и обозначается
.

В свою очередь, множество называется областью значений функции и обозначается
.

Кроме того, необходимо отметить, что элементы множества
называют независимыми переменными, элементы множества называют зависимыми переменными.

Способы задания функции

Функция может задаваться следующими основными способами: табличным, графическим, аналитическим.

Если на основании экспериментальных данных составляют таблицы, в которых содержатся значения функции и соответствующие им значения аргумента, то такой способ задания функции называют табличным.

В то же время, если некоторые исследования результата эксперимента выводят на регистратор (осциллограф, самописец и т. д.), то отмечают, что функция задается графически.

Наиболее распространенным есть аналитический способ задания функции, т.е. способ, при котором с помощью формулы связывают независимую и зависимую переменные. При этом существенную роль играет область определения функции:

разные, хотя они и задаются одинаковыми аналитическими соотношениями.

Если задают только формулу функции
, то считают, что область определения этой функции совпадает с множеством тех значений переменной, для которых выражение
имеет смысл. В этой связи особую роль играет проблема нахождения области определения функции.

Задача 3.1. Найти область определения функции

Решение

Первое слагаемое принимает действительные значения при
,а второе при. Таким образом, для нахождения области определения заданной функции необходимо решить систему неравенств:

В результате решения такой системы получают . Следовательно, область определения функции есть отрезок
.

Простейшие преобразования графиков функций

Построение графиков функций можно существенно упростить, если пользоваться известными графиками основных элементарных функций. Основными элементарными функциями называются следующие функции:

1)степенная функция
где
;

2)показательная функция
где
и
;

3)логарифмическая функция
, где -любое положительное число, отличное от единицы:
и
;

4)тригонометрические функции




;
.

5)обратные тригонометрические функции
;
;
;
.

Элементарными функциями называются функции, получающиеся из основных элементарных функций с помощью четырех арифметических действий и суперпозиций, примененных конечное число раз.

Простые геометрические преобразования также позволяют упростить процесс построения графика функций. Эти преобразования основываются на следующих утверждениях:

    График функции y=f(x+a) есть графикy=f(x), сдвинутый (при a >0 влево, при a < 0 вправо) на |a| единиц параллельно осиOx.

    График функции y=f(x) +bесть графикy=f(x), сдвинутый (приb>0 вверх, приb< 0 вниз) на |b| единиц параллельно осиOy.

    График функции y = mf(x) (m0) есть график y = f(x), растянутый (приm>1) вmраз или сжатый (при 0

    График функции y = f(kx) есть график y = f(x), сжатый (при k >1) в k раз или растянутый (при 0< k < 1) вдоль оси Ox. При –< k < 0 график функции y = f(kx) есть зеркальное отображение графика y = f(–kx) от оси Oy.

Параллельный перенос.

ПЕРЕНОС ВДОЛЬ ОСИ ОРДИНАТ

f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на |b| единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на |b| единиц больше - при b 0 или вверх при b Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на |b| единиц вверх при b>0 или на |b| единиц вниз при b

ПЕРЕНОС ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на |a| единиц при a > 0 или вправо на |a| единиц при a Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на |a| единиц вправо при a>0 или на |a| единиц влево при a

Примеры:

1.y=f(x+a)

2.y=f(x)+b

Отражение.

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = F(-X)

f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = - F(X)

f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.

Примеры:

1.y=-f(x)

2.y=f(-x)

3.y=-f(-x)

Деформация.

ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ ОРДИНАТ

f(x) => k f(x)
Рассмотрим функцию вида y = k f(x), где k > 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в k раз больше ординат графика функции у = f(x) при k > 1 или 1/k раз меньше ординат графика функции y = f(x) при k Для построения графика функции y = k f(x) следует построить график функции y = f(x) и увеличить его ординаты в k раз при k > 1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/k раз при k
k > 1 - растяжение от оси Ох
0 - сжатие к оси OX


ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(k x)
Пусть требуется построить график функции y = f(kx), где k>0. Рассмотрим функцию y = f(x), которая в произвольной точке x = x1 принимает значение y1 = f(x1). Очевидно, что функция y = f(kx) принимает такое же значение в точке x = x2, координата которой определяется равенством x1 = kx2, причем это равенство справедливо для совокупности всех значений х из области определения функции. Следовательно, график функции y = f(kx) оказывается сжатым (при k 1) вдоль оси абсцисс относительно графика функции y = f(x). Таким образом, получаем правило.
Для построения графика функции y = f(kx) следует построить график функции y = f(x) и уменьшить его абсциссы в k раз при k>1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в 1/k раз при k
k > 1 - сжатие к оси Оу
0 - растяжение от оси OY




Работу выполнили Чичканов Александр, Леонов Дмитрий под руководством Ткач Т.В, Вязовова С.М, Островерховой И.В.
©2014
Похожие статьи