Предположение о волновом характере движения частиц. Волновые свойства частиц. Общие требования к оформлению

16.01.2024

Свет обладает как волновыми, так и корпускулярными свойствами. Волновые свойства проявляются при распространении света (интерференция, дифракция). Корпускулярные свойства проявляются при взаимодействии света с веществом (фотоэффект, излучение и поглощение света атомами).

Свойства фотона как частицы (энергия Е и импульс p) связаны с его волновыми свойствами (частотой ν и длиной волны λ) соотношениями

; , (19)

где h=6,63×10 -34 Дж - постоянная Планка.

Пытаясь преодолеть трудности боровской модели атома, французский физик Луи де Бройль в 1924 г. выдвинул гипотезу, что сочетание волновых и корпускулярных свойств присуще не только свету, но и любому материальному телу. То есть частицы вещества (например, электроны) обладают волновыми свойствами. высказал предположение, Согласно де Бройлю каждому телу массой m, движущемуся со скоростью υ, соответствует волновой процесс с длиной волны

Наиболее ярко волновые свойства проявляются у микрообъектов (элементарных частиц). Вследствие малой массы длина волны де Бройля оказывается сравнимой с межатомным расстоянием в кристаллах. В этих условиях при взаимодействии пучка частиц с кристаллической решеткой возникают дифракционные явления. Электронам с энергией 150 эВ соответствует длина волны λ»10 -10 м . Такого же порядка межатомные расстояния в кристаллах. Если пучок таких электронов направить на кристалл, то они будут рассеиваться по законам дифракции. Зафиксированная на фотопленке дифракционная картина (электронограмма) содержит информацию о строении трехмерной кристаллической решетки.

Рисунок 6 Иллюстрация волновых свойств вещества

Для иллюстрации волновых свойств частиц часто используют мысленный эксперимент - прохождение пучка электронов (или других частиц) через щель шириной Δх. С точки зрения волновой теории после дифракции на щели пучок будет уширяться с угловой расходимостью θ»λ/Δх. С корпускулярной точки зрения уширение пучка после прохождения щели объясняется появлением у частиц некоторого поперечного импульса. Разброс значений этого поперечного импульса ("неопределенность") есть

(21)

Соотношение (22)

носит название соотношения неопределенностей. Это соотношение на корпускулярном языке отражает наличие волновых свойств у частиц.

Эксперимент по прохождению пучка электронов через две близко расположенные щели может служить еще более яркой иллюстрацией волновых свойств частиц. Этот эксперимент является аналогом оптического интерференционного опыта Юнга.

4. 10 Квантовая модель атома Экспериментальные факты (дифракция электронов, эффект Комптона, фотоэффект и многие другие) и теоретические модели, вроде боровской модели атома, с определенностью свидетельствуют, что законы классической физики становятся неприменимыми для описания поведения атомов и молекул и их взаимодействия со светом. В течение десятилетия между 1920-м и 1930-м гг. ряд выдающихся физиков ХХ в. (де Бройль, Гейзенберг, Борн, Шредингер, Бор, Паули и др.) занимался построением теории, которая могла бы адекватно описать явления микромира. В результате родилась квантовая механика, ставшая основой всех современных теорий строения вещества, можно сказать, основой (вместе с теорией относительности) физики ХХ в.


Законы квантовой механики применимы в микромире, в то же время мы с вами являемся макроскопическими объектами и живем в макромире, управляющимся совершенно иными, классическими законами. Поэтому неудивительно, что многие положения квантовой механики не могут быть проверены нами непосредственно и воспринимаются как странные, невозможные, непривычные. Тем не менее, квантовая механика является, наверное, самой подтвержденной на опыте теорией, так как следствия расчетов, выполненных по законам этой теории, используются практически во всем, что нас окружает, и стали частью человеческой цивилизации (достаточно упомянуть о тех полупроводниковых элементах, работа которых в данный момент позволяют читателю видеть текст на экране монитора, покрытие которого, кстати, также рассчитано с помощью квантовой механики).

К сожалению, используемый квантовой механикой математический аппарат довольно сложен и идеи квантовой механики могут быть изложены лишь словесно и поэтому недостаточно убедительно. С учетом этого замечания попытаемся дать хоть какое-то представление об этих идеях.

Основным понятием квантовой механики является понятие квантового состояния какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.).

Квантовая модель атома отличается от планетарной в первую очередь тем, что в ней электрон не имеет точно определенной координаты и скорости, поэтому бессмысленно говорить о траектории его движения. Можно определить (и нарисовать) только границы области его преимущественного движения (орбитали).

Состояние какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.) может быть охарактеризовано заданием квантовых чисел: значений энергии, импульса, момента импульса, проекции этого момента импульса на какую-то ось, заряда и т.п.

УРАВНЕНИЕ ШРЕДИНГЕРА для движения электрона в кулоновском поле ядра атома водорода используется для анализа квантовой модели атома. В результате решения этого уравнения получается волновая функция, которая зависит не только от координаты и времени t, но и от 4-х параметров, имеющих дискретный набор значений и называемых квантовыми числами. Они имеют названия: главное, азимутальное, магнитное и магнитное спиновое.

Главное квантовое число n может принимать целочисленные значения 1, 2, ... . Оно определяет величину энергии электрона в атоме

Где Е i - энергия ионизации атома водорода (13,6 эВ).

АЗИМУТАЛЬНОЕ (ОРБИТАЛЬНОЕ) квантовое число l определяет модуль момента импульса электрона при его орбитальном движении (24) где s – спиновое квантовое число, которое у каждой частицы имеет только одно значение. Например, для электрона s = (аналогично, для протона и нейтрона). Для фотона s = 1.

Вырожденными называются состояния электрона с одинаковой энергией.

КРАТНОСТЬ ВЫРОЖДЕНИЯ равна количеству состояний с одной и той же энергией.

КРАТКАЯ запись состояния электрона в атоме: ЦИФРА , равная главному квантовому числу, и буква, определяющая азимутальное квантовое число:

Таблица 1 Краткая запись состояния электрона в атоме

Недостатки теории Бора указывали на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т.п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризующейся определенными координатами и определенной скоростью.

Мы уже знаем, что в оптических явлениях наблюдается своеобразный дуализм. Наряду с явлениями дифракции, интерференции (волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений , а имеет универсальный характер. Частицы вещества также обладают волновыми свойствами .

«В оптике, – писал Луи де Бройль, – в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?» Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

Если фотон обладает энергией и импульсом , то и частица (например электрон), движущаяся с некоторой скоростью, обладает волновыми свойствами, т.е. движение частицы можно рассматривать как движение волны.

Согласно квантовой механике, свободное движение частицы с массой m и импульсом (где υ – скорость частицы) можно представить как плоскую монохроматическую волну (волну де Бройля ) с длиной волны

(3.1.1)

распространяющуюся в том же направлении (например в направлении оси х ), в котором движется частица (рис. 3.1).

Зависимость волновой функции от координаты х даётся формулой

, (3.1.2)

где – волновое число волновой вектор направлен в сторону распространения волны или вдоль движения частицы:

. (3.1.3)

Таким образом, волновой вектор монохроматической волны , связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны .

Поскольку кинетическая энергия сравнительно медленно движущейся частицы , то длину волны можно выразить и через энергию:

. (3.1.4)

При взаимодействии частицы с некоторым объектом – с кристаллом, молекулой и т.п. – её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно, меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны λ с расстоянием d между рассеивающими центрами : .

Гипотеза Луи де Бройля была революционной, даже для того революционного в науке времени. Однако, она вскоре была подтверждена многими экспериментами.

К началу XX века в оптике были известны как явления, подтверждающие наличие волновых свойств у света (интерференция, поляризация, дифракция и др.), так и явления, нашедшие объяснение с позиций корпускулярной теории (фотоэффект, эффект Комптона и др.). В начале XX века для частиц вещества был обнаружен ряд эффектов, внешне сходных с оптическими явлениями, характерными для волн. Так, в 1921 году Рамзауэр при исследовании рассеяния электронов на атомах аргона обнаружил, что при уменьшении энергии электрона от нескольких десятков электрон-вольт эффективное сечение упругого рассеяния электронов на аргоне растет (рисунок 4.1).

Но при энергии электрона ~16 эВ эффективное сечение достигает максимума и при дальнейшем уменьшении энергии электрона уменьшается. При энергии электрона ~ 1 эВ становится близким к нулю, а затем начинает снова увеличиваться.

Таким образом, вблизи ~ 1 эВ электроны как бы не испытывают с атомами аргона столкновений и пролетают через газ без рассеяния. Такое же поведение характерно и для сечения рассеяния электронов на других атомах инертных газов, а также на молекулах (последнее обнаружено Таунсендом). Этот эффект аналогичен образованию пятна Пуассона при дифракции света на малом экране.

Другой интересный эффект - селективное отражение электронов от поверхности металлов; оно изучалось в 1927 году американскими физиками Дэвиссоном и Джермером, а также независимо от них английским физиком Дж. П. Томсоном.

Параллельный пучок моноэнергетических электронов из электронно-лучевой трубки (рисунок 4.2) направляли на никелевую пластинку. Отраженные электроны улавливались коллектором, соединенным с гальванометром. Коллектор устанавливается под любым углом относительно падающего пучка (но в одной плоскости с ним).

В результате опытов Дэвиссона-Джермера показано, что угловое распределение рассеянных электронов имеет такой же характер, как и распределение рентгеновских лучей, рассеянных кристаллом (рисунок 4.3). При изучении дифракции рентгеновских лучей на кристаллах было установлено, что распределение дифракционных максимумов описывается формулой

где - постоянная кристаллической решетки, - порядок дифракции, - длина волны рентгеновского излучения.

В случае рассеяния нейтронов на тяжелом ядре также возникало типично дифракционное распределение рассеянных нейтронов, аналогичное наблюдаемому в оптике при дифракции света на поглощающем диске или шарике.

Французский ученый Луи де Бройль в 1924 году высказал идею о том, что частицы вещества обладают и корпускулярными, и волновыми свойствами. При этом он предположил, что частице, свободно движущейся с постоянной скоростью, соответствует плоская монохроматическая волна

где и - ее частота и волновой вектор.

Волна (4.2) распространяется в направлении движения частицы (). Такие волны получили название фазовых волн , волн вещества или волн де Бройля .

Идея де Бройля заключалась в том, чтобы расширить аналогию между оптикой и механикой, а волновую оптику сопоставить с волновой механикой, пытаясь применить последнюю к внутриатомным явлениям. Попытка приписать электрону, и вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми и корпускулярными свойствами, связанными между собой квантом действия, - такая задача представлялась крайне необходимой и плодотворной. ”…Необходимо создать новую механику волнового характера, которая будет относиться к старой механике как волновая оптика к геометрической оптике”, - писал де Бройль в книге «Революция в физике».

Частица массы, движущаяся со скоростью, имеет энергию

и импульс

а состояние движения частицы характеризуется четырехмерным вектором энергии-импульса ().

С другой стороны, в волновой картине мы используем понятие частоты и волнового числа (или длины волны), а соответствующим плоской волне 4-вектором является ().

Так как оба приведенных описания являются различными аспектами одного и того же физического объекта, то между ними должна существовать однозначная связь; релятивистски инвариантным соотношением между 4-векторами является

Выражения (4.6) называются формулами де Бройля . Длина волны де Бройля определяется, таким образом, формулой

(здесь). Именно эта длина волны должна фигурировать в формулах при волновом описании эффекта Рамзауэра - Таунсенда и опытов Дэвиссона - Джермера.

Для электронов, ускоренных электрическим полем с разностью потенциалов В, длина волны де Бройля нм; при кВ =0,0122 нм. Для молекулы водорода с энергией Дж (при = 300 К) =0,1 нм, что по порядку величины совпадает с длиной волны рентгеновского излучения.

С учетом (4.6) формулу (4.2) можно записать в виде плоской волны

соответствующей частице, имеющей импульс и энергию.

Волны де Бройля характеризуются фазовой и групповой скоростями. Фазовая скорость определяется из условия постоянства фазы волны (4.8) и для релятивистской частицы равна

то есть она всегда больше скорости света. Групповая скорость волн де Бройля равна скорости движения частицы:

Из (4.9) и (4.10) следует связь между фазовой и групповой скоростями волн де Бройля:

Каков же физический смысл волн де Бройля и какова их связь с частицами вещества?

В рамках волнового описания движения частицы значительную гносеологическую сложность представил вопрос о ее пространственной локализации. Волны де Бройля (4.2), (4.8) заполняют все пространство и существуют неограниченное время. Свойства этих волн всегда и везде одинаковы: постоянны их амплитуда и частота, неизменны расстояния между волновыми поверхностями и др. С другой стороны, микрочастицы сохраняют свои корпускулярные свойства, то есть обладают определенной массой, локализованной в определенной области пространства. Для того, чтобы выйти из создавшегося положения, частицы стали представлять не монохроматическими волнами де Бройля, а наборами волн с близкими частотами (волновыми числами) - волновыми пакетами :

при этом амплитуды отличны от нуля лишь для волн с волновыми векторами, заключенными в интервале (). Поскольку групповая скорость волнового пакета равна скорости движения частицы, то было предложено представить частицу в виде волнового пакета. Но эта идея несостоятельна по следующим причинам. Частица является стабильным образованием и в процессе своего движения как таковая не изменяется. Такими же свойствами должен обладать и волновой пакет, претендующий представлять частицу. Поэтому нужно потребовать, чтобы с течением времени волновой пакет сохранял свою пространственную форму или - по меньшей мере - свою ширину. Однако так как фазовая скорость зависит от импульса частицы, то (даже в вакууме!) должна существовать дисперсия волн де Бройля. В результате фазовые соотношения между волнами пакета нарушаются, и пакет расплывается. Следовательно, частица, представляемая таким пакетом, должна быть нестабильной. Этот вывод противоречит опыту.

Далее было выдвинуто противоположное предположение: частицы первичны, а волны представляют их образования, то есть возникают, подобно звуку в среде, состоящей из частиц. Но такая среда должна быть достаточно плотной, ведь о волнах в среде частиц имеет смысл говорить лишь тогда, когда среднее расстояние между частицами очень мало по сравнению с длиной волны. А в экспериментах, в которых обнаруживаются волновые свойства микрочастиц, это не выполняется. Но даже если преодолеть это затруднение, то все равно указанная точка зрения должна быть отвергнута. В самом деле, она означает, что волновые свойства присущи системам многих частиц, а не отдельным частицам. Между тем волновые свойства частиц не исчезают и при малых интенсивностях падающих пучков. В опытах Бибермана, Сушкина и Фабриканта, проведенных в 1949 году, применялись столь слабые пучки электронов, что средний промежуток времени между двумя последовательными прохождениями электрона через дифракционную систему (кристалл) было в 30000 (!) раз больше времени, затрачиваемого одним электроном на прохождение всего прибора. При таких условиях взаимодействие между электронами, конечно, не играло никакой роли. Тем не менее при достаточно длительной экспозиции на фотопленке, помещенной за кристаллом, возникала дифракционная картина, ничем не отличающаяся от картины, получаемой при короткой экспозиции с пучками электронов, интенсивность которых была в 10 7 раз больше. Важно только, чтобы в обоих случаях общее число электронов, попадающих на фотопластинку, было одинаковым. Это показывает, что и отдельные частицы обладают волновыми свойствами. Эксперимент показывает, что одна частица дифракционной картины не дает, каждый отдельный электрон вызывает почернение фотопластинки на небольшом участке. Всю дифракционную картину можно получить только благодаря попаданию на пластинку большого числа частиц.

Электрон в рассмотренном опыте полностью сохраняет свою целостность (заряд, массу и другие характеристики). В этом проявляются его корпускулярные свойства. В то же время налицо проявление и волновых свойств. Электрон никогда не попадает на тот участок фотопластинки, где должен быть минимум дифракционной картины. Он может оказаться только вблизи положения дифракционных максимумов. При этом нельзя заранее указать, в каком конкретном направлении полетит данная конкретная частица.

Представление о том, что в поведении микрообъектов проявляются как корпускулярные, так и волновые свойства, закреплено в термине «корпускулярно-волновой дуализм» и лежит в основе квантовой теории, где он и получил естественное истолкование.

Борн предложил следующую общепринятую теперь интерпретацию результатов описанных опытов: вероятность попадания электрона в некоторую точку на фотопластинке пропорциональна интенсивности соответствующей волны де Бройля, то есть квадрату амплитуды волнового поля в данном месте экрана. Таким образом, предложено вероятностно-статистическое толкование природы волн, связанных с микрочастицами: закономерность распределения микрочастиц в пространстве можно установить только для большого числа частиц; для одной частицы можно определить только вероятность попадания в определенную область.

После знакомства с корпускулярно-волновым дуализмом частиц ясно, что для описания механического состояния микрочастиц непригодны те методы, которые используются в классической физике. В квантовой механике для описания состояния нужно применять новые специфические средства. Важнейшим из них является понятие о волновой функции, или функции состояния (-функции ).

Функция состояния есть математический образ того волнового поля, которое следует связывать с каждой частицей. Так, функцией состояния свободной частицы является плоская монохроматическая волна де Бройля (4.2) или (4.8). Для частицы, подверженной внешнему воздействию (например, для электрона в поле ядра), это волновое поле может иметь весьма сложный вид, и оно изменяется с течением времени. Волновая функция зависит от параметров микрочастицы и от тех физических условий, в которых частица находится.

Далее мы увидим, что через волновую функцию достигается наиболее полное описание механического состояния микрообъекта, какое только возможно в микромире. Зная волновую функцию, можно предсказать, какие значения всех измеряемых величин могут наблюдаться на опыте и с какой вероятностью. Функция состояния несет всю информацию о движении и квантовых свойствах частиц, поэтому говорят о задании с ее помощью квантового состояния.

Согласно статистической интерпретации волн де Бройля, вероятность локализации частицы определяется интенсивностью волны де Бройля, так что вероятность обнаружения частицы в малом объеме в окрестности точки в момент времени равна

С учетом комплексности функции имеем:

Для плоской волны де Бройля (4.2)

то есть равновероятно обнаружить свободную частицу в любом месте пространства.

Величину

называют плотностью вероятности. Вероятность найти частицу в момент времени в конечном объеме, согласно теореме сложения вероятностей, равна

Если в (4.16) произвести интегрирование в бесконечных пределах, то будет получена полная вероятность обнаружения частицы в момент времени где-нибудь в пространстве. Это - вероятность достоверного события, поэтому

Условие (4.17) называется условием нормировки , а -функцию, удовлетворяющую ему, - нормированной .

Подчеркнем еще раз, что для частицы, движущейся в силовом поле, в качестве выступает функция более сложного вида, чем плоская волна де Бройля (4.2).

Так как -функция комплексна, то ее можно представить в виде

где - модуль -функции, а - фазовый множитель, в котором - любое вещественное число. Из совместного рассмотрения этого выражения и (4.13) ясно, что нормированная волновая функция определена неоднозначно, а лишь с точностью до постоянного множителя. Отмеченная неоднозначность принципиальная и не может быть устранена; однако она несущественна, так как не отражается ни на каких физических результатах. Действительно, умножение функции на экспоненту изменяет фазу комплексной функции, но не ее модуль, определяющий вероятность получения в эксперименте того или иного значения физической величины.

Волновую функцию частицы, движущейся в потенциальном поле, можно представить волновым пакетом. Если при движении частицы вдоль оси длина волнового пакета равна, то волновые числа, необходимые для его образования, не могут занимать сколь угодно узкий интервал. Минимальная ширина интервала должна удовлетворять соотношению или, после умножения на,

Аналогичные соотношения выполняются и для волновых пакетов, распространяющихся вдоль осей и:

Соотношения (4.18), (4.19) называют соотношениями неопределенностей Гейзенберга (или принципом неопределенности ). Согласно этому фундаментальному положению квантовой теории, любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения.

Соотношения, аналогичные записанным, должны выполняться для любой пары так называемых канонически сопряженных величин. Содержащаяся в соотношениях неопределенностей постоянная Планка устанавливает предел в точности одновременного измерения таких величин. При этом неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с объективными (волновыми) свойствами частиц материи.

Другим важным моментом в рассмотрении состояний микрочастиц является воздействие прибора на микрообъект. Любой процесс измерения приводит к изменению физических параметров состояния микросистемы; нижний предел этого изменения устанавливается также соотношением неопределенностей.

Ввиду малости по сравнению с макроскопическими величинами той же размерности действия соотношения неопределенностей существенны в основном для явлений атомных и меньших масштабов и не проявляются в опытах с макроскопическими телами.

Соотношения неопределенностей, впервые полученные в 1927 году немецким физиком В. Гейзенбергом, явились важным этапом в выяснении закономерностей внутриатомных явлений и построении квантовой механики.

Как следует из статистической интерпретации смысла волновой функции, частица может быть с некоторой вероятностью обнаружена в любой точке пространства, в которой волновая функция отлична от нуля. Поэтому результаты экспериментов по измерению, например, координаты носят вероятностный характер. Это означает, что при проведении серии одинаковых экспериментов над одинаковыми системами (то есть при воспроизведении одинаковых физических условий) получаются каждый раз разные результаты. Однако некоторые значения будут более вероятными, чем другие, и будут появляться чаще. Чаще всего будут получаться те значения координаты, которые близки к значению, определяющему положение максимума волновой функции. Если максимум выражен четко (волновая функция представляет собой узкий волновой пакет), то частица в основном находится вблизи этого максимума. Тем не менее некоторый разброс в значениях координаты (неопределенность порядка полуширины максимума) неизбежен. То же относится и к измерению импульса.

В атомных системах величина по порядку величины равна площади орбиты, по которой, в соответствии с теорией Бора-Зоммерфельда, движется частица в фазовой плоскости. В этом можно убедиться, выражая площадь орбиты через фазовый интеграл. При этом получится, что квантовое число (смотри лекцию 3) удовлетворяет условию

В отличие от теории Бора, где имеет место равенство (здесь - скорость электрона на первой боровской орбите в атоме водорода, - скорость света в вакууме,), в рассматриваемом случае в стационарных состояниях средний импульс определяется размерами системы в координатном пространстве, а отношение составляет лишь по порядку величины . Таким образом, применяя координаты и импульс для описания микроскопических систем, необходимо в интерпретацию этих понятий ввести квантовые поправки. Такой поправкой и являются соотношения неопределенностей.

Несколько иной смысл имеет соотношение неопределенностей для энергии и времени:

Если система находится в стационарном состоянии, то из соотношения неопределенностей следует, что энергию системы даже в этом состоянии можно измерить лишь с точностью, не превышающей, где - длительность процесса измерения. Соотношение (4.20) справедливо также, если под понимать неопределенность значения энергии нестационарного состояния замкнутой системы, а под - характерное время, в течение которого существенно меняются средние значения физических величин в этой системе.

Соотношение неопределенностей (4.20) приводит к важным выводам относительно возбужденных состояний атомов, молекул, ядер. Такие состояния нестабильны, и из соотношения неопределенностей вытекает, что энергии возбужденных уровней не могут быть строго определенными, то есть энергетические уровни обладают некоторой естественной шириной , где - время жизни возбужденного состояния. Другим примером служит альфа-распад радиоактивного ядра. Энергетический разброс испускаемых -частиц связан с временем жизни такого ядра соотношением.

Для нормального состояния атома, а энергия имеет вполне определенное значение, то есть . Для нестабильной частицы с, и об определенном значении ее энергии говорить не приходится. Если время жизни атома в возбужденном состоянии принять равным с, то ширина энергетического уровня ~10 -26 Дж и ширина спектральной линии, возникающей при переходе атома в нормальное состояние, ~10 8 Гц.

Из соотношений неопределенностей следует вывод о том, что в квантовой механике теряет смысл деление полной энергии на кинетическую и потенциальную. Действительно, одна из них зависит от импульсов, а другая - от координат. Эти же переменные не могут одновременно иметь определенные значения. Энергия должна определяться и измеряться лишь как полная энергия, без деления на кинетическую и потенциальную.

Главная > Практикум

Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны: λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплексной волновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер, в отличие от объектов макромира, которые описываются законами классической механики.Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.Открытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.

Дифракция электронов.

Для получения спектра световых волн и определения их длины используется дифракционная решетка. Она представляет собой совокупность большого числа узких щелей, разделенных непрозрачными промежутками, например, стеклянная пластинка с нанесенными на ней царапинами (штрихами). Как и от двух щелей (смотри лаб. работу 2), при прохождении через такую решетку плоской монохроматической волны, каждая щель станет источником вторичных когерентных волн, в результате сложения которых возникнет интерференционная картина. Условие возникновения максимумов интерференции на экране, расположенном на расстоянии L от дифракционной решетки, определяется разностью хода между волнами от соседних щелей. Если в точке наблюдения разность хода будет равна целому числу волн, то произойдет их усиление и будет наблюдаться максиму интерференционной картины. Расстояние между максимумами для света определенной длины волны λ определяется по формуле: h 0 = λL/d. Величина d называется периодом решетки и равна сумме ширины прозрачного и непрозрачного промежутков. Для наблюдения дифракции электронов в качестве естественной дифракционной решетки используют кристаллы металла. Периоду d такой естественной дифракционной решетки соответствует характерное расстояние между атомами кристалла.Схема установки для наблюдения электронной дифракции приведена на рисунке 1. Проходя разность потенциалов U между катодом и анодом, электроны приобретают кинетическую энергию E кин. = Ue, где e - заряд электрона. Из формулы кинетической энергии E кин. = (m e v 2)/2 можно найти скорость электрона: . Зная массу электрона m e можно определить его импульс и соответственно длину волны де Бройля.

По такой же схеме в 30-е годы был создан электронный микроскоп, дающий увеличение в 10 6 раз. В нем вместо световых волн используются волновые свойства пучка электронов, ускоренных до больших энергий в условиях глубокого вакуума. Были изучены существенно более мелкие объекты, чем с помощью светового микроскопа, а по разрешающей способности улучшение - в тысячи раз. При благоприятных условиях можно сфотографировать даже отдельные крупные атомы, максимально близко расположенные детали объекта размером порядка 10 -10 м. Без него вряд ли была возможность контролировать дефектов микросхем, получать чистые вещества, развивать микроэлектронику, молекулярную биологию и т.д.

Лабораторная работа № 7. Порядок выполнения работы.

Откройте рабочее окно.

А). Переместив движок в правой стороне рабочего окна, задайте произвольное значение ускоряющего напряжения U (пока вы не переместите движок, кнопки будут неактивны!!! ) и запишите это значения. Нажмите кнопку Пуск . Пронаблюдайте на экране рабочего окна, как проявляется интерференционная картина при дифракции электронов на металлической фольге. Обратите внимание, что попадание электронов в различные точки экрана носит случайный характер, однако вероятность попадания электронов в определенные области экрана равна нулю, а в другие отлична от нуля. Именно поэтому и проявляется интерференционная картина.Дождитесь, пока на экране четко не проявятся концентрические круги интерференционной картины и нажмите кнопку Тест . Внимание! Пока интерференционная картина не станет достаточно четкой, кнопка Тест будет неактивна. Она станет активной после того, как курсор мыши, при наведении на эту кнопку, изменит вид со стрелки на руку!!! На экране появится графическое изображение вероятности распределения электронов по оси x, соответствующее интерференционной картине. Перетащите измерительную линейку в область графика. С помощью правой кнопки мыши увеличьте изображение графика и определите расстояние между двумя крайними максимумами интерференции с точностью до десятых долей миллиметра. Запишите это значение. Разделив, это значение на 4 вы получите расстояние h 0 между максимумами интерференционной картины. Запишите его. С помощью правой кнопки мыши верните изображение в исходное состояние. Используя формулы в теоретической части определите длину волны де Бройля. Подставьте это значение в окно теста и нажмите кнопку Проверить Правильно!!! Б). Используя формулы в теоретической части, по ускоряющему напряжению найдите скорость электронов, и запишите ее. Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! Рассчитайте импульс электрона, и по формуле де Бройля найдите длину волны. Сравните полученное значение с найденным по интерференционной картине.В). Измените напряжение и нажав кнопку Тест повторите пункты А и Б . Результаты проведенных тестов покажите преподавателю. По результатам измерений составьте таблицу:

Скорость электрона v

Импульс электрона p

Г). Сравните рассчитанное значение λ для разных напряжений. Как меняется длина волны с изменением скорости электрона?Д). Волновые свойства проявляются только для объектов микромира. Однако в формуле де Бройля нет никаких указаний о том, что ее можно использовать только для микрообъектов. Зная импульс макрообъекта, можно рассчитать длину волны де Бройля. Рассчитайте ее для автомобиля массой 1000 кг, движущегося со скоростью 150 км/час. Сравните ее с характерным минимальным размером в квантовой физике, так называемой Планковской длиной (10 -33 см). Почему, автомобиль не может проявить свои волновые свойства – например, «не заметить» какой-нибудь объект?

Лабораторная работа № 7. Форма отчета.

В заголовке указываются:


НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Задание. Дифракция электронов.

А). Найденное расстояние h 0 . Расчет длины волны λ.

Б). Расчеты скорости электрона, импульса и длины волны.

В). Повтор пунктов А и Б .Таблица с результатами:

h 0 (расстояние между максимумами)

Скорость электрона v

Импульс электрона p

Г). Анализ результатов. Ответы на вопросы.

Д). Определение длины волны де Бройля для автомобиля. Ответы на вопросы. Выводы.

1. В чем суть гипотезы Луи де Бройля?
2. Какие эксперименты подтвердили эту гипотезу?
3. Какова специфика описания состояния объектов микромира в отличие от описания объектов макромира?
4. Почему открытие волновых свойств у микрочастиц, наряду с проявлением корпускулярных свойств у электромагнитных волн (света) позволило говорить о корпускулярно-волновом дуализме материи? Поясните суть этих представлений.
5. Как зависит длина волны де Бройля от массы и от скорости микрочастицы?
6. Почему макрообъекты не проявляют волновых свойств?

Лабораторная работа № 8. ОПИСАНИЕ

Дифракция фотонов. Соотношение неопределенностей.

Рабочее окно

Вид рабочего окна приведен на Рис. 1.1. В рабочем окне приведена модель дифракции фотонов. В нижней правой части окна расположены кнопки теста. В окно под кнопками теста вводятся рассчитанные параметры. В верхнем положении переключателя это неопределенность импульса фотона, а в нижнем - произведение неопределенности импульса на неопределенность координаты x. В окнах, расположенных ниже, фиксируется число правильных ответов и число попыток. Перемещением движков можно изменять длину волны фотона и размеры щели.

Рисунок 1.1.

Для измерения расстояния от максимума дифракционной картины до минимума используется движок расположенный справа от окна модели. Измерения проводятся для нескольких значений размеров щели. Тестовая система фиксирует количество правильно данных ответов и общее число попыток.

Лабораторная работа № 8. Теория

Соотношение неопределенностей.

ЦЕЛЬ РАБОТЫ: На примере дифракции фотонов дать представление студентам о соотношении неопределенностей. Используя модель дифракции фотонов на щели, наглядно продемонстрировать, что чем точнее определена координата x фотона, тем менее точно определено значение проекции его импульса p x .

Соотношение неопределенностей

В 1927 г. В.Гейзенберг открыл так называемые соотношения неопределенностей , в соответствии с которыми неопределенности координат и импульсов связаны между собой соотношением:
, где
, h постоянная Планка. Своеобразие описания микромира в том, что произведение неопределенности (точности определения) положения Δx и неопределенности (точности определения) импульса Δp x всегда должно быть равно или больше константы, равной –. Из этого следует, что уменьшение одной из этих величин должно приводить к увеличению другой. Хорошо известно, что любое измерение сопряжено с определенными ошибками и совершенствуя приборы измерения, можно уменьшать погрешности, т. е. повышать точность измерения. Но Гейзенберг показал, что существуют сопряженные (дополнительные) характеристики микрочастицы, точное одновременное измерение которых, принципиально невозможно. Т.е. неопределенность – свойство самого состояния, оно не связано с точностью прибора.Для других сопряженных величин – энергии E и времени t соотношение имеет вид:
. Это означает, что при характерном времени эволюции системы Δt , погрешность определения ее энергии не может быть меньше чем
. Из этого соотношения следует возможность возникновения из ничего, так называемых, виртуальных частиц на промежуток времени меньший, чем
и обладающих энергией ΔE . При этом закон сохранения энергии не будет нарушен. Поэтому по современным представлениям вакуум это не пустота, в которой отсутствуют поля и частицы, а физическая сущность, в которой постоянно возникают и исчезают виртуальные частицы. Одним из основных принципов квантовой механики является принцип неопределенностей , открытый Гейзенбергом. Получение информации об одних величинах, описывающих микрообъект, неизбежно ведет к уменьшению информации о других величинах, дополнительных к первым. Приборы, регистрирующие величины, связанные соотношениями неопределенности, разного типа, они дополнительны друг к другу. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовыми объектами, происходящий помимо и независимо от какого-либо наблюдателя. Если в классической физике измерение не возмущало сам объект, то в квантовой механике каждое измерение разрушает объект, уничтожая его волновую функцию. Для нового измерения объект нужно готовить заново. В этой связи Н. Бор выдвинул п ринцип дополнительности , суть которого в том, что для полного описания объектов микромира необходимо использование, двух противоположных, но дополняющих друг друга представлений.

Дифракция фотонов, как иллюстрация соотношения неопределенностей

С точки зрения квантовой теории свет можно рассматривать как поток световых квантов - фотонов. При дифракции монохроматической плоской волны света на узкой щели, каждый фотон, прошедший через щель, попадает в определенную точку на экране (Рис 1.). Предсказать, в какую именно точку попадет фотон невозможно. Однако в совокупности, попадая в разные точки экрана, фотоны дают дифракционную картину. Когда фотон проходит через щель, можно говорить, что его координата x, была определена с погрешностью Δx, которая равна размеру щели. Если фронт плоской монохроматической волны параллелен плоскости экрана со щелью, то каждый фотон имеет импульс, направленный по оси z перпендикулярно экрану. Зная длину волны, этот импульс можно точно определить: p = h/λ.

Однако после прохождения через щель, направление импульса меняется, в результате чего и наблюдается дифракционная картина. Модуль импульса остается постоянным, так как при дифракции света длина волны не меняется. Отклонение от первоначального направления возникает за счет появления составляющей Δp x вдоль оси х (Рис. 1.). Величину этой составляющей для каждого конкурентного фотона определить невозможно, но максимальное ее значение по модулю определяет ширину 2S дифракционной картины. Максимальное значение Δp x и является мерой неопределенности импульса фотона, возникающей при определении его координаты с погрешностью Δx. Как видно из рисунка, максимальное значение Δp x равно: Δp x = psinθ, . Если L >> s , тогда можно записать: sinθ =s/L и Δp x = p(s/L ).

Лабораторная работа № 8. Порядок выполнения работы.

Ознакомьтесь с теоретической частью работы.

Откройте рабочее окно. А). Переместив движки с правой стороны рабочего окна, задайте произвольные значения длины волны λ и размера щели Δx. Запишите эти значения. Нажмите кнопку Тест . Используя правую кнопку мыши, увеличьте изображение дифракционной картины. С помощью движка, находящегося справа от изображения дифракционной картины, определите максимальное расстояние s, на которое отклоняются фотоны по оси x, и запишите его. С помощью правой кнопки мыши верните изображение в исходное состояние. Используя формулы в теоретической части определите Δp x . Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! Б). Используя найденные значения, найдите произведение Δp x Δx. Подставьте это значение в окно теста и нажмите кнопку Проверить . Если расчеты сделаны правильно, появиться надпись Правильно!!! .В). Измените размер щели и нажав кнопку Тест повторите пункты А и Б . Результаты проведенных тестов покажите преподавателю. По результатом измерений составьте таблицу:

Δx (ширина щели)

Импульс фотона p

Δp x (рассчитанное)

Г). Сравните рассчитанное значение Δp x Δx с постоянной Планка h и сделайте вывод. Как меняется погрешность в определении импульса с уменьшением погрешности измерения координаты?Д). С точки зрения квантовой механики классическим объектом (прибором) является экран со щелью, а квантовым объектом фотон. В момент измерения (прохождения фотона сквозь щель) мы с погрешностью Δx определяем координату x фотона, при этом возникает неопределенность Δp x импульса фотона. Можно ли после взаимодействия с прибором точно указать траекторию движения этого фотона? Останется ли его координата x после прохождения щели той же самой. Какова роль прибора в микромире?

Лабораторная работа № 8. Форма отчета.

Общие требования к оформлению.

Работа выполняется на листах бумаги формата A4, или на двойных тетрадных листах.

В заголовке указываются:

Фамилия и инициалы студента, № группы
НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Каждое задание лабораторной работы оформляется как ее раздел и должно иметь заголовок. В отчете по каждому заданию, должны быть даны ответы на все вопросы и, если это указано, сделаны выводы и приведены необходимые рисунки. Результаты тестовых заданий обязательно должны быть показаны преподавателю. В заданиях, включающих в себя измерения и расчеты, должны быть приведены данные измерений и данные проведенных расчетов.

Задание. Соотношение неопределенностей.

А). Значения длины волны λ и размера щели Δx. Измеренное максимальное расстояние s. Расчеты импульса фотона и Δp x .

Б). Расчеты произведения Δp x Δx.
В). Повтор пунктов А и Б .Таблица с результатами:

Δx (ширина щели)

Импульс фотона p

Δp x (рассчитанное)

Г). Анализ результатов. Выводы. Ответы на вопросы.

Д). Ответы на вопросы.

Контрольные вопросы для проверки усвоения темы лабораторной работы:

1. Поясните, почему из соотношения неопределенностей следует невозможность одновременного точного определения сопряженных величин?
2. Энергетические спектры излучения связаны с переходом электронов с более высоких энергетических уровней на более низкие. Этот переход происходит за определенный промежуток времени. Можно ли абсолютно точно определить энергию излучения?
3. Изложите суть принципа неопределенностей.
4. Какова роль прибора в микромире?
5. Из соотношения неопределенностей объясните, почему при дифракции фотонов уменьшение размера щели приводит к увеличению ширины дифракционной картины?
6. Изложите суть принципа дополнительности Бора.
7. Чем по современным представлениям является вакуум?

Лабораторная работа № 9. ОПИСАНИЕ

Тепловое движение (1)

Рабочее окно

Вид рабочего окна приведен на Рис. 6.1. В левой части рабочего окна приведена модель теплового движения частиц в объеме, который разделен на две части перегородкой. При помощи мыши перегородку можно переместить влево (нажав левую кнопку мыши на ее верхней части) или удалить (щелкнув на нижней части).

Р

исунок 6.1.

В правой части рабочего окна приведены: температура (в правой и левой части, моделируемого объема), мгновенные скорости частиц, а также регистрируется число столкновений частиц со стенками в процессе наблюдения. Кнопкой Пуск запускается движение частиц, при этом начальные скорости и расположение частиц задаются случайным образом. В окошке рядом с кнопкой Пуск задается число частиц. Кнопка Стоп останавливает движение. При нажатии на кнопку Продолжить движение возобновляется, и очищаются окна регистрации числа столкновений со стенками. При помощи кнопки Нагрев можно увеличивать температуру в правой части моделируемого объема. Кнопка Выкл. отключает нагрев. Переключателем справа от кнопок управления можно задать несколько разных режимов работы.

Для открытия рабочего окна нажмите на его изображение.

Лабораторная работа № 9. Теория

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

Похожие статьи