Куда обычно бьет молния и почему. Только ли грозы рождают молнии? Где на Земле больше всего молний

20.09.2019

Еще 250 лет назад знаменитый американский ученый и общественный деятель Бенджамин Франклин установил, что молния — это электрический разряд. Но до сих пор раскрыть до конца все тайны, которые хранит молния, не удается: изучать это природное явление сложно и опасно.

(20 фото молний + видео Молния в замедленной съёмке)

Внутри тучи

Грозовую тучу не спутаешь с обычным облаком. Ее мрачный, свинцовый цвет объясняется большой толщиной: нижний край такой тучи висит на расстоянии не более километра над землей, верхний же может достигать высоты 6-7 километров.

Что происходит внутри этой тучи? Водяной пар, из которого состоят облака, замерзает и существует в виде ледяных кристаллов. Восходящие потоки воздуха, идущие от нагретой земли, увлекают мелкие льдинки вверх, заставляя их все время сталкиваться с крупными, оседающими вниз.

Кстати, зимой земля нагревается меньше, и в это время года, практически, не образуется мощных восходящих потоков. Поэтому зимние грозы — крайне редкое явление.

В процессе столкновений льдинки электризуются, точно так же, как это происходит при трении различных предметов один о другой, — например, расчески о волосы. Причем, мелкие льдинки приобретают заряд положительный, а крупные — отрицательный. По этой причине верхняя часть молниеобразующего облака приобретает положительный заряд, а нижняя — отрицательный. Возникает разность потенциалов в сотни тысяч вольт на каждом метре расстояния — как между облаком и землей, так и между частями облака.

Развитие молнии

Развитие молнии начинается с того, что в некотором месте облака возникает очаг с повышенной концентрацией ионов — молекул воды и, составляющих воздух, газов, от которых отняли или к которым добавили электроны.

По одним гипотезам, такой очаг ионизации получается из-за разгона в электрическом поле свободных электронов, всегда имеющихся в воздухе в небольших количествах, и соударением их с нейтральными молекулами, которые сразу же ионизируются.

По другой гипотезе, начальный толчок вызывается космическими лучами, которые все время пронизывают нашу атмосферу, ионизируя молекулы воздуха.

Ионизированный газ служит неплохим проводником электричества, поэтому через ионизированные области начинает течь ток. Дальше — больше: проходящий ток нагревает область ионизации, вызывая всё новые высокоэнергетичные частицы, которые ионизируют близлежащие области, — канал молнии очень быстро распространяется.

Вслед за лидером

На практике процесс развития молнии происходит в несколько стадий. Сначала передний край проводящего канала, называемый «лидером», продвигается скачками по нескольку десятков метров, каждый раз, немного меняя направление (от этого молния получается извилистой). Причем скорость продвижения «лидера» может, в отдельные моменты, достигать 50 тысяч километров за одну-единственную секунду.

В конце концов, «лидер» достигает земли или другой части облака, но это еще не главная стадия дальнейшего развития молнии. После того, как ионизированный канал, толщина которого может достигать нескольких сантиметров, оказывается «пробит», по нему с огромной скоростью — до 100 тысяч километров всего за одну секунду — устремляются заряженные частицы, это и есть сама молния.

Ток в канале составляет сотни и тысячи ампер, а температура внутри канала, при этом, достигает 25 тысяч градусов — потому молния и дает столь яркую вспышку, видимую за десятки километров. А мгновенные перепады температур, в тысячи градусов, создают сильнейшие перепады давления воздуха, распространяющиеся в виде звуковой волны — грома. Этот этап длится очень недолго — тысячные доли секунды, но энергия, которая при этом выделяется, огромна.

Конечная стадия

На конечной стадии скорость и интенсивность движения зарядов в канале снижается, но, все равно, остаются достаточно большими. Именно этот момент наиболее опасен: конечная стадия может длиться только десятые (и даже меньше) доли секунды. Такое, достаточно длительное, воздействие на предметы на земле (например, на сухие деревья) часто приводит к пожарам и разрушениям.

Причем, как правило, одним разрядом дело не ограничивается — по проторенному пути могут двинуться новые «лидеры», вызывая в том же самом месте повторные разряды, по количеству доходящих до нескольких десятков.

Несмотря на то, что человечеству известна молния с момента появления самого человека на Земле, до настоящего времени она до конца еще не изучена.

Молния - это мощный электрический разряд. Он возникает при сильной электризации туч или земли. Поэтому разряды молнии могут происходить или внутри облака, или между соседними наэлектризованными облаками, или между наэлектризованным облаком и землей. Разряду молнии предшествует возникновение разности электрических потенциалов между соседними облаками или между облаком и землей.

Электризация, то есть образование сил притяжения электрической природы, всем хорошо знакома из повседневного опыта.


Если расчесать чистые сухие волосы пластмассовой расческой, они начинают притягиваться к ней, или даже искрят. После этого расческа может притягивать и другие мелкие предметы, например, мелкие бумажки. Это явление называется электризация трением .

Что вызывает электризацию облаков? Ведь они не трутся друг о друга, как это происходит при образовании электростатического заряда на волосах и на расческе.

Грозовое облако - это огромное количество пара, часть которого сконденсирована в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. Каждое такое столкновение приводит к электризации. При этом крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верх грозовой тучи заряжен положительно, а низ - отрицательно.

Электрическое поле тучи имеет огромную напряженность - около миллиона В/м. Когда большие противоположно заряженные области подходят достаточно близко друг к другу, некоторые электроны и ионы, пробегая между ними, создают светящийся плазменный канал, по которому за ними устремляются остальные заряженные частицы. Так происходит молниевый разряд.

Во время этого разряда выделяется огромная энергия - до миллиарда Дж. Температура канала достигает 10 000 К, что и рождает яркий свет, который мы наблюдаем при разряде молнии. Облака постоянно разряжаются по этим каналам, и мы видим внешние проявления данных атмосферных явлений в виде молний.

Раскаленная среда взрывообразно расширяется и вызывает ударную волну, воспринимаемую как гром.

Мы и сами можем смоделировать молнию, пусть миниатюрную. Опыт следует производить в темном помещении, иначе ничего не будет видно. Нам потребуется два продолговатых воздушных шарика. Надуем их и завяжем. Затем, следя, чтобы они не соприкасались, одновременно натрем их шерстяной тряпочкой. Воздух, наполняющий их, электризуется. Если шарики сблизить, оставив между ними минимальный зазор, то от одного к другому через тонкий слой воздуха начнут проскакивать искры, создавая световые вспышки. Одновременно мы услышим слабое потрескивание - миниатюрную копию грома при грозе.


Каждый, кто видел молнию, заметил, что это не ярко светящаяся прямая, а ломаная линия. Поэтому процесс образования проводящего канала для разряда молнии называют ее "ступенчатым лидером". Каждая из таких "ступенек" - это место, где разогнавшиеся до околосветовых скоростей электроны остановились из-за столкновений с молекулами воздуха и изменили направление движения.

Таким образом, молния - это пробой конденсатора, у которого диэлектриком является воздух, а обкладками - облака и земля. Емкость такого конденсатора невелика - примерно 0,15 мкФ, но запас энергии огромен, так как напряжение достигает миллиарда вольт.

Одна молния состоит обычно из нескольких разрядов, каждый из которых длится всего несколько десятков миллионных долей секунды.

Наиболее часто молния возникает в кучево-дождевых облаках. Молния бывает также при вулканических извержениях, торнадо и пылевых бурях.

Существует несколько видов молний по форме и по направлению разряда. Разряды могут происходить:

  • между грозовым облаком и землей,
  • между двумя облаками,
  • внутри облака,
  • уходить из облака в чистое небо.

Существует распространенный стереотип, утверждающий, что молния бьет сверху вниз. Это далеко не так, ведь помимо наземных, существуют еще внутриоблачные молнии и даже молнии, которые существуют только в ионосфере.

Молния представляет собой огромный электрический разряд, ток в котором может достигать сотен тысяч ампер, а напряжение - сотен миллионов ватт. Длина некоторых молний в атмосфере может достигать десятков километров.

Природа молнии

Впервые физическую природу молний описал американский ученый Бенджамин Франклин. В начале 1750-х годов он провел эксперимент по изучению атмосферного электричества. Франклин дождался наступления грозовой погоды и запустил в небо воздушного змея. В змея ударила молния, и Бенджамин пришел к выводу об электрической природе молний. Ученому повезло - примерно в то же время российский исследователь Г. Рихман, тоже изучавший атмосферное электричество, погиб от удара молнии в сконструированный им аппарат.

Полнее всего изучены процессы образования молний в грозовых облаках. Если молния проходит в самом облаке, ее называют внутриоблачной. А если ударяет в землю, она называется наземной.

Наземные молнии

Процесс формирования наземной молнии включает в себя несколько этапов. Сначала электрическое поле в атмосфере достигает своих критических значений, происходит ионизация и наконец, образуется искровой разряд, который ударяет из грозового облака в землю.

Строго говоря, молния бьет сверху вниз лишь отчасти. Сначала из облака по направлению к земле устремляется начальный разряд. Чем ближе он подходит к земной поверхности, тем больше усиливается напряженность электрического поля. Из-за этого навстречу к приближающейся молнии с поверхности Земли выбрасывается ответный заряд. После этого по соединяющему небо и землю ионизированному каналу выбрасывается главный разряд молнии. Он действительно бьет сверху вниз.

Внутриоблачные молнии

Внутриоблачные молнии обычно гораздо больше наземных. Их длина может составлять до 150 км. Чем ближе местность расположена к экватору, тем чаще в ней возникают внутриоблачные молнии. Если в северных широтах соотношение внутриоблачных и наземных молний примерно одинаково, в экваториальной полосе внутриоблачные молнии составляют примерно 90% всех грозовых разрядов.

Спрайты, эльфы и джеты

Помимо обычных грозовых молний, существуют такие малоизученные явления как эльфы, джеты и спрайты. Спрайты представляют собой подобия молний, которые появляются на высоте до 130 км. Джеты формируются в нижних слоях ионосферы и представляют собой разряды в виде синих . Разряды-эльфы тоже имеют конусообразную форму и могут достигать диаметра в несколько сотен километров. Обычно эльфы появляются на высоте около 100 км.

Если объяснять без заумных физических терминов, то молния всегда бьёт по самому высокому предмету. Потому что молния - это электрический разряд, а он проходит по пути меньшего сопротивления. Именно поэтому он в первую очередь ударит по самому высокому дереву в поле и по самому высокому зданию в городе. Например, в Останкинскую телебашню молния попадает около 50 раз в год!

Длина молнии может составлять до 20 км, а её диаметр - от 10 до 45 см. «Живёт» молния десятые части секунды, а её средняя скорость - 150 км/с. При этом сила тока в молнии доходит до 200 000 А.

Что делать, если молния застала вас на открытой местности

  • Не прячьтесь под высокие деревья, особенно единичные. Самыми опасными в данном случае считаются лиственные деревья, например дуб и тополь. А вот в хвойные деревья молния попадает намного реже, потому что в них есть эфирные масла, имеющие электрическое сопротивление (кстати, липа, орех и бук также в зоне безопасности, в них тоже есть масла). При этом попадание в кусты или невысокие заросли крайне маловероятно.
  • На открытом пространстве лучше всего прятаться в яме или траншее. При этом ни в коем случае не ложитесь на землю: лучше присесть, слегка пригнув голову, чтобы она не была выше окружающих предметов. Ноги держите вместе, чтобы снизить площадь возможного поражения.
  • Не бегайте. Воздушный поток, который вы создаёте при беге, может привлечь шаровую молнию.
  • Сложите зонт и отключите мобильный, а также избавьтесь от других металлических предметов: сложите их на безопасном расстоянии (хотя бы 15 м).
  • Если вас двое или трое, каждый должен найти для себя отдельное укрытие, поскольку наше тело - это отличный проводник для разряда.
  • Не купайтесь в водоёмах во время грозы. Если непогода застала вас врасплох, не бегите из воды и не размахивайте руками. Спокойно и медленно выйдите из водоёма.
  • Если вы находитесь в горах, избегайте резких выступов и возвышений.

Как узнать, что молния вот-вот ударит

Если вы находитесь на открытой местности и вдруг почувствовали, что волосы становятся дыбом, а кожу слегка покалывает, или ощутили вибрацию, исходящую от предметов, это значит, что сейчас бахнет.

Такие ощущения появляются за 3–4 секунды до удара молнии. Немедленно нагнитесь вперёд, положив руки на колени (ни в коем случае не на землю!), пятки приставьте друг к другу, чтобы разряд не прошёл через тело.

Что делать, если во время грозы вы находитесь в помещении

  • Закройте форточки, окна и двери.
  • Отключите электроприборы от розеток.
  • Отойдите от окон и металлических предметов.
  • Если нужно срочно позвонить, сделайте это сразу после грозового разряда - и быстро.

Что будет, если молния ударит в человека

Когда в человека ударяет молния, разряд вызывает общие нарушения. В тех местах, куда молния вошла и где вышла, могут образоваться ожоги или древообразные красные полосы. Если поражение было слабым, появляется шум в ушах, общая слабость.

А вот при тяжёлом поражении человек может упасть в обморок, у него резко снижается температура тела, замедляется сердцебиение, может остановиться дыхание. Но пострадавшего ещё можно успеть спасти.

Можно ли выжить после удара молнией

Да. Во-первых, несмотря на высокую температуру во время разряда, воздействие длится совсем недолго и далеко не всегда приводит даже к серьёзным ожогам.

Во-вторых, основной ток часто проходит по поверхности тела, поэтому в большинстве случаев удар молнией не смертельный. По разным оценкам смерть наступает в 5–10% случаев.

Вероятность выжить увеличивается, если рядом находится человек, который умеет делать искусственное дыхание и массаж сердца. Даже если человек кажется мёртвым, обязательно попытайтесь оказать ему . Потому что шанс на выживание есть всегда!

Как оказать первую помощь при ударе молнией

  1. Потерпевшего нужно положить на твёрдую поверхность.
  2. Если человеку повезло и у него просто шок (потеря речи, обморок), попробуйте вывести его из этого состояния. Если случайно есть с собой нашатырь, используйте его. Звоните в скорую.
  3. Если человек без сознания и не дышит, нужно как можно скорее сделать искусственное дыхание рот в рот и непрямой массаж сердца.
  4. Пробуйте безостановочную реанимацию. У вас есть максимум 15 минут, после чего шансы на спасение при сильном поражении крайне малы.

Редкого человека могут оставить равнодушными раскаты грома и вспышки молнии. Реальная опасность, исходящая от грозной стихии, всегда будоражила воображение. Наш далекий предок с ужасом ожидал развязки того, что происходит в грохочущем и пылающем небе, угадывая в стихии природу божественного. Но и сегодня, в пору торжества науки и техники, в природе образования и проявления молнии далеко не все ясно.

Притягивающие молнию

В старые времена человека, пораженного молнией, закапывали в землю. И тем самым зачастую спасали ему жизнь. Даже сегодня иногда с пострадавшим поступают так же, понимая, что таким образом с несчастного можно снять электрический разряд.

Но молния вполне может вызвать у многих людей чувство растерянности, бессилия, ощущение загадочности происходящего. Рассказывают о таком случае. Дело было в Японии. Группа школьников, будучи в горах, попала в грозу. Чтобы не потеряться в непогоду, учитель заставил ребят связаться веревкой так, как это делают альпинисты. И что же? В цепочку ребят попала молния, и каждый третий в ряду оказался убит. Конечно, мокрая веревка – отличный проводник атмосферного электричества. Но почему погиб именно каждый третий? Ученые до сих пор теряются в догадках.

Известно, что выступающие вверх предметы притягивают к себе молнию, поэтому на селе она ударяет в кресты и купола храмов и церквей, в городах – в небоскребы и телебашни, на открытых пространствах – в отдельно стоящие высокие деревья, под которыми ни в коем случае нельзя прятаться в грозу. Замечено, что на открытых местах молния чаще всего попадает туда, где находятся скопления воды или проходят трубопроводы, залегают руды.

Эксперименты, проводимые с манекенами, на которые навешивают металлические предметы, показали, что молния проходит через металлические предметы, не задевая манекен. Но будет ли то же самое, если манекен заменить человеком? В отличие от куклы, человек обладает свойствами электрического магнита, а значит, по определению «не безразличен» для молнии.

Известно, что колдуны Америки обладают искусством вызывать молнию. Делается это так. В непогоду мужчины племени по знаку колдуна собираются в строго определенном месте в большой круг и начинают замысловатый танец с копьями. Ритуальная пляска продолжается до тех пор, пока в центр круга не ударяет молния. Но в демонстрируемом на потребу публике могуществе колдуна скрыта хитрость. Племя для вызывания молнии выбирает место, богатое подземными водами. Место, в которое обязательно должна ударить молния.

Молнии «любят» не только определенные места, но и определенных людей. Журнал «Фейт» рассказал историю майора Саммерфорда, который в 1918 году пострадал от стихии во Фландрии. Удар молнии сбросил его с лошади, парализовал нижнюю часть тела. Уволившись по инвалидности из армии, майор уехал в Ванкувер и в 1924 году подвергся новой атаке молнии, которая парализовала правую сторону тела. Прошло два года, майор оправился от второго удара молнией и даже начал прогуливаться по парку. Но летом 1930 года его вновь отыскала «огненная стрела». На этот раз парализовала все тело. Его через два года не стало. Но спустя два года после кончины майора, а именно в июне 1934 года, в кладбище Ванкувера ударила молния, и удар ее пришелся аккурат в надгробие несчастного мужчины, разбив его вдребезги.

В 1950 году журнал «Фейт» поведал такую историю. В 1899 году во дворе дома города Торонто (Италия) молнией был убит человек. Ровно через 30 лет от удара молнии погиб его сын. А 8 октября 1949 года «загадочная и ужасная» поражает, внука первого и сына второго несчастного. И что примечательно – молния убивала их на одном и том же месте.

Мифы и факты

Хотя статистика говорит нам, что гибель от удара молнии случается крайне редко, нельзя недооценивать эту опасность. Судя по прогнозам синоптиков, аномальная жара может смениться ливнями с грозами. Возможно, именно такой сценарий ждет наш регион. Предлагаем пополнить копилку знаний полезными и интересными фактами о молниях. Рассмотрим, насколько отвечают действительности некоторые мифы о молнии.

Миф 1: торнадо и ураганы опасней, чем молния.

Факт: молния убивает больше людей каждый год, чем торнадо или ураганы. Только от наводнений умирает намного больше людей, чем от молний.

Миф 2: даже дома в вас может попасть молния.

Факт: пожалуй, самое безопасное место во время грозы – в доме, но это не значит, что не нужно принимать мер предосторожности.

Если в здание попала молния, то электрический ток скорее всего пройдет по водопроводу или проводке, прежде чем уйти в землю. Поэтому во время молнии не разговаривайте по проводному телефону, держитесь подальше от проточной воды (не принимайте душ, не мойте тарелки и руки). Не используйте кухонную плиту, компьютер или другие приборы, присоединенные к электрической сети.

Миф 3: молния всегда сбивает самолеты.

Факт: в реальности молния регулярно попадает в самолеты, но редко приводит к крушению. В среднем, по меньшей мере, раз в год в каждый самолет попадает молния. Большинство самолетов сделаны из алюминия, который является хорошим проводником электричества, поэтому для самолетов предусмотрены строгие правила техники безопасности.

Миф 4: во время грозы необходимо выключать электронные приборы.

Факт: выброс тока может повредить электронику, даже если молния не попала в ваш дом. Если вы не уверены в надежности работы прибора по защите от выброса напряжения, то отключите компьютер, телевизор и другую электронику. Если вы начнете отключать приборы во время грозы, то есть шанс подвергнуться удару тока, поэтому это нужно делать до начала грозы.

Миф 5: во время грозы опасно находиться в машине.

Факт: на самом деле, машины представляют собой одно из самых безопасных мест во время грозы, если вы не имеете возможности зайти в здание. Только убедитесь, что у вашей машины надежная и крепкая крыша.

Миф 6: молния не попадает два раза в одно и то же место.

Факт: во время грозы молния может попасть несколько раз в одно и то же место.

Миф 7: во время грозы находиться на улице не безопасно.

Факт: если вы оказались на улице во время грозы, то постарайтесь укрыться в заземленном здании или в машине. Если это не представляется возможным, то следующие советы помогут минимизировать риск: избегайте открытых пространств и одиноко стоящих высоких объектов (например, деревьев). Держитесь подальше от воды – она хорошо проводит ток. Не ложитесь на землю – это увеличит площадь контакта, ведь если неподалеку от вас в землю ударит молния – то чем меньше площадь контакта, тем меньше тока перетечет в вас.

Миф 8: необходимо оставаться дома еще в течение получаса после окончания грозы.

Факт: в большинстве случаев, молния попадает в людей не в самый разгар грозы. Согласно данным национальной метеорологической службы США (НМС), молния может ударить с расстояния в 15 км от того места, где идет дождь, поэтому если вы слышите гром – значит вы в зоне угрозы попадания молнии. НМС советует придерживаться следующего совета: «Если слышите гром, то переждите дома. Из дома будет безопасно выходить через полчаса после того, как в последний раз прогремел гром».

Миф 9: можно определить расстояние до грозы, считая, сколько секунд прошло от вспышки света до грома.

Факт: удивительно, но этот детский трюк действительно работает. Свет распространяется быстрее звука, поэтому сначала мы видим вспышку света, а потом раскат грома. Чтобы определить расстояние до грозы, необходимо знать скорость звука: он движется со скоростью в 1 км за три секунды.

Интересно

Типичная молния длится около четверти секунды и состоит из 3–4 разрядов.

В мире каждую минуту сверкает 6000 молний.

Температура молнии может достигать более 27 тысяч градусов по Цельсию. Это в несколько горячее, чем поверхность Солнца!

Вероятность увидеть шаровую молнию хотя бы раз в жизни составляет 1 к 10000.

Ударяя в песчаную почву, молния способствует образованию стекла. После грозы в песке можно найти полоски стекла.

Молнии наблюдаются также на Венере, Юпитере, Сатурне и Уране.

Вероятность быть убитым молнией составляет 1 к 2000000. Такие же шансы у каждого из нас умереть от падения с кровати.

Греки верили, что жемчуг образуется, когда молния ударяет в море.

Вверх — Отзывы читателей (7) — Написать отзыв — Версия для печати

Изначально слышен разряд — треск — как у шокера, только нааамного громче — но это только доли секунды, и то слышат те, которые рядом с местом удара молнии: от вспышки до грома менее секунды. Слышал этот треск 3 раза, в разные года и на одном и том же месте, место открытое — берег Волги — ощущения скажу....Одна из нерассмотренных причин- наличие сильно заряженных воздушных потоков: разные "чудеса" с попаданиями молнии в предметы, в которые молния по законам физики казалось бы попадать не должна, связаны довольно часто именно с повышенной наэлектризованностью воздушных потоков, которые,как известно, обладают наименьшим электрическим сопротивлением.При чем, толщина этих потоков может быть всего лишь с пол метра(!!!)

А у нас в Япошке землятресения. Они ничем не лучше грозы

У меня бомбитмолния как не знаю где!(

Похожие статьи