Кросинговер, его причины и биологическое значение. Кроссинговер, механизмы и эволюционное значение Кроссинговер осуществляется

23.11.2023

Кроссинговер (англ. crossing-over - перекрест хромосом) - процесс обмена гомологичных хромосом участками во время их конъюгации в профазе I мейоза. Кроссинговер является одним из механизмов генетической рекомбинации (обмена генами) . Частота его зависит от расстояния между генами: чем дальше расположены гены друг от друга, тем чаще между ними идет перекрест. 1% кроссинговера принят за единицу расстояния между генами. Она названа морганидой в честь Т. Моргана, разработавшего принципы генетического картирования . Цитологическим признаком кроссинговера служат хиазмы - χ-образные фигуры бивалентов во время обмена участками. Кроссинговер обычно бывает мейотическим, но иногда происходит в митозе (соматический кроссинговер). Он может также осуществляться внутри гена.

Кроссинговер - один из важнейших процессов, обеспечивающих комбинативную изменчивость и, тем самым, дающий материал для естественного отбора.

Суть этого процесса заключается в обмене участков гомологичных хромосом. Это происходит путем разрыва и последующего соединения в новом порядке хроматид. Кроссинговер может приводить к рекомбинации больших участков хромосомы с несколькими генами или частей одного гена (так называемый внутригенный кроссинговер ), обеих нитей молекулы ДНК или только одной. Кроссинговер происходит во время конъюгации в I фазе мейоза . Кроссинговер может наблюдаться и при митотическом делении , но реже. В случае бесполых организмов митотический кроссинговер является единственным способом генетической рекомбинации. Митотический кроссинговер способен привести к мозаичной экспрессии рецессивных признаков у гетерозиготной особи. Такая экспрессия имеет важное значение в онкогенезе и в изучении летальных рецессивных мутаций.

Явление кроссинговера было открыто Ф. Янссенсом в 1909 году при изучении мейоза клеток саламандры, но теоретически явление кроссинговера предсказывали и раньше. В частности, американский цитолог У. Сэттон в 1903 г. предположил, что в одной хромосоме может находиться несколько генов, и тогда должно наблюдаться сцепленное наследование признаков, т.е. несколько разных признаков могут наследоваться так, как будто они контролируются одним геном. Подобная совокупность генов в одной хромосоме образует группу сцепления. Собственно, изучение кроссинговера и групп сцепления позволило создать карты хромосом . Первая карта хромосом была создана для плодовой мушки дрозофилы.

Типы кроссинговера

В зависимости от типа клеток , в которых происходит кроссинговер:

  • мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток,
  • митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

Взависимости от молекулярной гомологии участков хромосом , вступающих в кроссинговер:

  • обычный (равный) – происходит обмен разными участками хромосом.
  • неравный - наблюдается разрыв в нетождественных участках хромосом.

В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов:

  • одинарный,
  • двойной,
  • множественный.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Значение кроссинговера:

  • приводит к увеличению комбинативной изменчивости,
  • приводит к увеличению мутаций.

Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

КРОССИНГОВЕР КРОССИНГОВЕР

(англ. crossingover - перекрест), перекрест, взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей - хроматид; приводит к новым комбинациям аллелей разных генов. Важнейший механизм, обеспечивающий комбинативную изменчивость в популяциях и тем самым дающий материал для естеств. отбора. Протекает в мейотически, реже митотически делящихся клетках. Может приводить к перекомбинации больших участков хромосомы с неск. генами или частей одного гена (внутригенный К.), обеих нитей молекулы ДНК или только одной. Частота К. между генами отражает расстояние между ними в хромосоме и определяется как частота кроссоверных (с неродительским сочетанием аллелей) особей в анализирующем скрещивании, т. е. как частота кроссоверных гамет; может изменяться под действием нек-рых физич., химич. и физиол. факторов. Молекулярный механизм К. окончательно не выяснен. К. используют в генетич. анализе для решения мн. проблем генетики. (см. РЕКОМБИНАЦИЯ , ГЕНЕТИЧЕСКАЯ КАРТА ХРОМОСОМЫ).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

кро́ссинго́вер

Взаимный обмен участками между гомологичными (попарными) хромосомами. Происходит в процессе клеточных делений – мейоза и (гораздо реже) митоза на стадии профазы, когда спаренные гомологичные хромосомы уже содержат по две сестринские хроматиды . На этой четырёххроматидной стадии и осуществляется обмен гомологичными участками хроматид: в каждой гомологичной хромосоме одна хроматида разрывается, а затем образовавшиеся фрагменты соседних хроматид воссоединяются заново, но уже крест-накрест (англ. «кроссинговер» – перекрёст). При кроссинговере гены из одной гомологичной хромосомы перемещаются в другую, в результате чего возникают новые комбинации аллелей генов, т.е. происходит рекомбинация генетического материала. Кроссинговер – один из механизмов наследственной изменчивости .

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "КРОССИНГОВЕР" в других словарях:

    Кроссинговер … Орфографический словарь-справочник

    - (англ. crossing over) взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов. Происходит в процессе деления клеток; один из механизмов наследственной изменчивости. В… … Большой Энциклопедический словарь

Допустив, что в одной хромосоме может размещаться больше чем один ген, следует поставить вопрос о том, а могут ли гены в гомологичной паре хромосом меняться местами, т. е. гены отцовской хромосомы перемещаться в материнскую и обратно.

Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения гомологичных хромосом в мейозе. Следовательно, возможность обмена наследственной информацией между родительскими организмами ограничивалась бы лишь одними менделевскими закономерностями наследования.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена генами, или гомологичными участками гомологичных хромосом, называют кроссинговером, или перекрестом хромосом. Наличие такого механизма обмена генами между скрещивающимися организмами, т. е. процесс рекомбинации генов, расширяет возможности комбинативной изменчивости в эволюции.

При скрещивании двух организмов, различающихся по двум сцепленным генам AB/AB x ab/ab возникает гетерозиготная форма AB/ab.

В случае полного сцепления дигетерозигота даст только два сорта гамет: АВ и ab. При анализирующем скрещивании возникают два класса зигот AB/ab и ab/ab в отношении 1:1. Особи обоих классов воспроизводят признаки своих родителей. Данная картина напоминает моногибридное, а не дигибридное расщепление при анализирующем скрещивании.

Но наряду с явлением полного сцепления закономерно существует явление неполного сцепления. В случае неполного сцепления при скрещивании гетерозиготных особей генотипа AB/ab с рецессивной формой ab/ab в потомстве появляются не два, а четыре класса фенотипов и генотипов: AB/ab, ab/ab, Ab/ab, aB/ab. Эти классы по качественному составу напоминают расщепление при анализирующем скрещивании дигибрида, когда осуществляется свободное комбинирование генов. Однако числовое отношение классов при неполном сцеплении отлично от свободного комбинирования, дающего отношение 1: 1: 1: 1. При неполном сцеплении возникают два новых класса зигот с иным, чем у родителей, сочетанием генов, а именно Ab/ab и aB/ab, которые всегда составляют менее 50%.

Образование новых классов зигот в расщеплении указывает на то, что в процессе гаметогенеза у форм, гетерозиготных по двум генам, образуются не только гаметы АВ и ab, но также Аb и аВ. Следовательно, гены, привнесенные в гибрид F 1 одной хромосомой, в процессе образования у него гамет каким-то образом расходятся. Как могли появиться гаметы с таким новым сочетанием генов? Очевидно, что они могли возникнуть только в том случае, если между гомологичными хромосомами произошел обмен участками, т. е. кроссинговер . Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера так же, как и сцепление, оказалось общим для всех животных, растений и микроорганизмов.

Кроссинговер можно обнаружить лишь в том случае, если гены находятся в гетерозиготном состоянии, т.е. AB/ab.

При гомозиготном состоянии генов AB/AB и ab/ab перекреста хромосом выявить нельзя, так как обмен идентичными участками не дает новых комбинаций генов в гаметах и в потомстве. О перекресте хромосом можно судить на основе генетического анализа частоты возникающих рекомбинантов, т. е. зигот с новым сочетанием генов, и цитологических исследований поведения хромосом в мейозе.

Перекрест происходит в профазе I мейоза, и поэтому его называют мейотическим перекрестом . Но иногда перекрест происходит и во время митоза в соматических клетках, тогда его называют митотическим , или соматическим .

Мейотический перекрест осуществляется после того, как гомологичные хромосомы в зиготенной стадии профазы I соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит не между хромосомами, а между хроматидами. Выражение «перекрест хромосом» является обобщенным понятием, имея в виду, что кроссинговер происходит между хроматидами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Кроссинговер (crossing-over): обмен генетического материала между хромосомами , как результат "разрыва" и соединения хромосом; процесс обмена участками хромосом при перекресте хромосом (рис. 118 , Б4).

Во время пахитены (стадия толстых нитей), гомологичные хромосомы находятся в состоянии конъюгации длительный период: у дрозофилы - четверо суток, у человека больше двух недель. Все это время отдельные участки хромосом находятся в очень тесном соприкосновении. Если в таком участке произойдет разрыв цепочек ДНК одновременно в двух хроматидах, принадлежащих разным гомологам, то при восстановлении разрыва может получиться так, что ДНК одного гомолога окажется соединенной с ДНК другой, гомологичной хромосомы. Этот процесс носит -название кроссинговера (англ. crossing-over - перекрест).

Поскольку кроссинговер - взаимный обмен гомологичными участками хромосом между гомологичными (парными) хромосомами исходных гаплоидных наборов - особи имеют новые, различающиеся между собой генотипы. При этом достигается перекомбинация наследственных свойств родителей, что увеличивает изменчивость и дает более богатый материал для естественного отбора.

Гены перемешиваются благодаря слиянию гамет двух различных особей, однако генетические изменения осуществляются не только этим путем. Никакие два потомка одних и тех же родителей (если только это не идентичные близнецы) не будут абсолютно одинаковыми. Во время мейоза осуществляются два различных вида пересортировки генов.

Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при первом делении мейоза , каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом. Из этого следует, что клетки любой особи могут в принципе образовать 2 в степени n генетически различающихся гамет, где n - гаплоидное число хромосом. Однако на самом деле число возможных гамет неизмеримо больше из-за кросинговера (перекреста) - процесса, происходящего во время длительной профазы первого деления мейоза , когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в 2 - 3 точках.

При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). Рекомбинация происходит в профазе первого деления мейоза , когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой , две из четырех хроматид перекрещиваются Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.

Кроссинговер (от англ. crossing–over – перекрёст) – это обмен гомологичными участками гомологичных хромосом (хроматид).

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с гаплотипами хроматид АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В , тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b . Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные гаплотипы (хроматиды) Ab и аВ . В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными ; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными , с их участием разовьются кроссоверные гаметы, зиготы и особи.

Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний (гаплотипов) наследственных задатков в хромосомах.

Примечание. Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе (см. ниже). В частности, возможна смена матрицы в вилке репликации.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m . Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).



Виды кроссинговера:

1.Двойной и множественный кроссинговер

2.Соматический (митотический) кроссинговер

3.Неравный кроссинговер

Эволюционное значение кроссинговера

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген , контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что…

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

Похожие статьи