Деление на ноль. Почему нельзя делить на ноль? Наглядный пример

10.10.2019

Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Вконтакте

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения , она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить . Это говорят учителя в школе, а дети обычно верят им на слово. Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?». Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий :

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль , то и произведение тоже станет нулевым.

Рассмотрим пример:

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что


Попробуем один умножить на ноль
. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится , значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень . В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Пользуемся правилом умножения, получаем 0.

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение .

Для математиков не существует понятий « » и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение .

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.

Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и «на ноль делить нельзя «. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»

Почему нельзя делить на ноль?

Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.

Возьмем число 10 и поделим его на 2 . Это подразумевает, что мы взяли 10 каких-либо предметов и расставили их по 2 равным группам, то есть 10: 2 = 5 (по 5 предметов в группе). Этот же пример можно записать и с помощью уравнения x * 2 = 10 х здесь будет равен 5 ).

Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0 .

Получится следующее: 10: 0 = х , следовательно х * 0 = 10 . Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0 . В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0 . Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.

Когда можно делить на ноль?

Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х , а значит х * 0 = 0 .

Предположим, что х=0 , тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0 , а значит и 0 * 0 = 0 .

Но что если х ≠ 0 ? Предположим, что х = 9 ? Тогда 9 * 0 = 0 и 0: 0 = 9 ? А если х=45 , то 0: 0 = 45 .

Мы действительно можем делить 0 на 0 . Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно .

Почему 0: 0 = NaN

Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число) .

Почему x: 0 = а x: -0 = —

Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0 иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞) .

Так можно ли делить на ноль?

Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя — это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.

Евгений Ширяев, преподаватель и руководитель Лаборатории математики Политехнического музея , рассказал АиФ.ru о делении на ноль:

1. Юрисдикция вопроса

Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?

Ни конституция РФ, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах АиФ.ru, попробовать что-нибудь разделить на ноль. Например, тысячу.

2. Разделим, как учили

Вспомните, когда вы только узнали, как делить, первые примеры решали спроверкой умножением: результат, умноженный на делитель должен был совпасть сделимым. Не совпал — не решили.

Пример 1. 1000: 0 =...

Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.

Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:

100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0

Ноль умножением все превращает в себя и никогда в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.

3. Нюанс

Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?

Пример 2. 0: 0 = ...

Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.

Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса это не Алиса, а Мэри-Энн, а обе они — сон кролика.

4. Что там про высшую математику?

Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось — ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать — дело безнадежное и невозможное. А значит... интересное! Дубль два.

Пример 3. Придумать, как разделить 1000 на 0.

А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:

Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:

1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.

Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:

Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.

В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:

При этом подразумевается аналогичная замена и для делимого:

1000 ↔ { 1000, 1000, 1000,... }

Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.

Посмотрим на последовательность частных:

Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:

Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:

При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.

5. И здесь нюанс с двумя нулями

Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном последовательность снулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:

Неопределенная ситуация. И так и называется: неопределенность вида 0/0 . Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

Ноль сам по себе цифра очень интересная. Сам по себе означает пустоту, отсутствие значения, а рядом с другой цифрой увеличивает ее значимость в 10 раз. Любые числа в нулевой степени всегда дают 1. Этот знак использовали еще в цивилизации майя, причем он у них еще обозначал понятие «начало, причина». Даже календарь у начинался с нулевого дня. А еще эта цифра связана со строгим запретом.

Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.

Почему нельзя делить на ноль? На этот вопрос хочется получить понятное логическое объяснение. В первом классе учителя это сделать не могли, потому как в математике правила объясняются с помощью уравнений, а в том возрасте мы и представления не имели о том, что это такое. А теперь пришла пора разобраться и получить понятное логическое объяснение того, почему нельзя делить на ноль.

Дело в том, что в математике лишь две из четырех основных операций (+, - , х, /) с числами признаются независимыми: умножение и сложение. Остальные же операции принято считать производными. Рассмотрим простенький пример.

Вот скажите, сколько получится, если от 20 отнять 18? Естественно, в нашей голове моментально возникает ответ: это будет 2. А как мы пришли к такому результату? Кому-то этот вопрос покажется странным - ведь и так все ясно, что получится 2, кто-то пояснит, что от 20 копеек отнял 18 и у него получилось две копейки. Логически все эти ответы не вызывают сомнений, однако с точки зрения математики решать эту задачу следует по-другому. Еще раз напомним, что главными операциями в математике являются умножение и сложение и поэтому в нашем случае ответ кроется в решении следующего уравнения: х + 18 = 20. Из которого и вытекает, что х = 20 - 18, х =2. Казалось бы, зачем так подробно все расписывать? Ведь и так все элементарно просто. Однако без этого тяжело объяснить почему нельзя делить на ноль.

А теперь посмотрим что получится если мы пожелаем 18 разделить на ноль. Снова составим уравнение: 18: 0 = х. Поскольку операция деления является производной от процедуры умножения, то преобразовав наше уравнение получим х * 0 = 18. Вот здесь как раз и начинается тупик. Любое число на месте икса при умножении на ноль даст 0 и получить 18 нам никак не удастся. Теперь становится предельно ясно почему нельзя делить на ноль. Сам ноль можно делить на какое-угодно число, а вот наоборот - увы, никак нельзя.

А что получится, если ноль разделить на самого себя? Это можно записать в таком виде: 0: 0 = х, или х * 0 = 0. Это уравнение имеет бесчисленное число решений. Поэтому в итоге получается бесконечность. Поэтому операция и в этом случае тоже не имеет смысла.

Деление на 0 лежит в корне многих мнимых математических шуток, которыми при желании можно озадачить любого несведущего человека. К примеру, рассмотрим уравнение: 4*х - 20 = 7*х - 35. Вынесем за скобки в левой части 4, а в правой 7. Получим: 4*(х - 5) = 7*(х - 5). Теперь умножим левую и правую часть уравнения на дробь 1 / (х - 5). Уравнение примет такой вид: 4*(х - 5)/(х - 5) = 7*(х - 5)/ (х - 5). Сократим дроби на (х - 5) и у нас выйдет, что 4 = 7. Из этого можно сделать вывод, что 2*2 = 7! Конечно, подвох здесь в том, что равен 5 и сокращать дроби было нельзя, поскольку это приводило к делению на ноль. Поэтому при сокращении дробей нужно всегда проверять чтобы ноль случайно не оказался в знаменателе, иначе результат получится совсем непредсказуемым.

Похожие статьи