Белок: третичная структура. Нарушение третичной структуры белка

26.09.2019

Среди органических веществ белки , или протеины , - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 - 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами . Кроме углерода , кислорода , водорода и азота , в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (-NH 2 ) с основными свойствами, другая - карбоксильной группой (-COOH ) с кислотными свойствами. Часть молекулы, называемая радикалом (R ), у разных аминокислот имеет различное строение. Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами .

Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.
Большинство белков имеют вид спирали в результате образования водородных связей между -CO- и -NH- группами разных аминокислотных остатков полипептидной цепи. Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль - вторичная структура белка.

Третичная структура - трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация - глобула . Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.
Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи.
Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

Кроме простых белков , состоящих только из аминокислот, есть еще и сложные белки

Важное свойство белков - их способность к денатурации. Этим понятием обозначают явления, связанные с необратимым изменением вторичной, третичной и четвертичной структур белка под воздействием нагревания, кислот, щелочей, УФ-лучей, ионизирующей радиации, ультразвука и др. Иными словами, де­натурация - это необратимое нарушение нативной пространст­венной конфигурации белковой молекулы, сопровождающееся существенными изменениями биологических и-физико-химических свойств белков.

Поскольку в образовании вторичной и третичной структур частично участвуют относительно слабые связи, физическое со­стояние белка в значительной степени зависит от температуры, рН, присутствия солей и других факторов. Нагревание, напри­мер, вызывает распрямление полипептидной цепи белковой мо­лекулы; некоторые химические реагенты разрывают водородные связи. Изменение рН также обусловливает разрыв связей, при этом проявляется электростатическая неустойчивость.

Белки под влиянием различных физических и химических факторов теряют свои первоначальные (нативные) свойства. Внешне это выражается в их свертывании и выпадении в осадок. Примером такого явления может служить свертывание альбуми­на молока при кипячении. Негидролитическое необратимое на­рушение нативной структуры белка и называется денатурацией. При этом рвутся в основном водородные связи, изменяется про­странственная структура белка, однако разрыва ковалентных связей в белковой молекуле не происходит.

Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (в нем уже нет ни спиралей, ни слоев, ни других каких-либо видов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами воды; таких водородных связей значительно больше, чем внутримолекулярных.

Взбивание яичного белка, сливок превращает их в пену, со­стоящую из пузырьков воздуха, окруженных тонкими белковы­ми пленками, образование которых сопровождается разверты­ванием полипептидных цепей в результате разрыва связей при механическом воздействии. Таким образом, при образовании пленок происходит частичная или полная денатурация белка. Такой вид денатурации называется поверхностной дена­турацией белка.



Для кулинарных процессов особое значение имеет тепло­вая денатурация белков. Механизм тепловой денатура­ции белков можно рассмотреть на примере глобулярных белков.

Основная молекула глобулярного белка состоит из одной или не­скольких полипептидных цепей, сложенных складками и обра­зующих клубки. Такая структура стабилизируется непрочными связями, среди которых большую роль играют водородные свя­зи, образующие поперечные мостики между параллельными пептидными цепями или их складками.

При нагревании белков начинается усиленное движение полипептидных цепей или складок, что приводит к разрыву не­прочных связей между ними. Белок разворачивается и приобре­тает необычную, неприродную форму, водородные и другие свя­зи устанавливаются в несвойственных данной молекуле местах, и конфигурация молекулы меняется. В результате происходит развертывание и перегруппировка складок, сопровождаемые перераспределением полярных и неполярных групп, причем не­полярные радикалы концентрируются на поверхности глобул, понижая их гидрофильность. При денатурации белки становятся нерастворимыми и в большей или меньшей мере утрачивают способность к набуханию.



При тепловой денатурации белков активная роль принадле­жит воде, которая участвует в образовании новой конформационной структуры денатурированного белка. Полностью обезвожен­ные белки не денатурируют даже при длительном нагревании. Денатурирующий эффект внешних воздействий тем сильнее, чем выше гидратация белков и ниже их концентрация в растворе.

При значениях рН среды, близких к ИЭТ белка, происходит максимальная дегидратация белка. Наиболее полно денатурация осуществляется в ИЭТ белка. Смещение рН в ту или иную сторо­ну от ИЭТ белка способствует повышению его термостабильно­сти и ослаблению денатурационных процессов.

Температура денатурации белков повышается в присутствии других термостабильных белков и некоторых веществ небелко­вой природы, например сахарозы. Это свойство белков исполь­зуют, когда при тепловой обработке необходимо повышение температуры смеси (например, при пастеризации мороженого, изготовлении яично-масляных кремов), не допуская расслоения или структурообразования в белковой коллоидной системе.

Появление на поверхности белковой молекулы после дена­турации ранее скрытых радикалов или функциональных групп изменяет физико-химические и биологические свойства белков. В результате денатурации свойства белков необратимо изменя­ются.

Из прогретой муки нельзя приготовить тесто, а из вареного мяса - котлеты, так как денатурированные белки не обладают способностью к гидратации и образованию вязких упруго-пла­стичных масс, пригодных для формования полуфабрикатов.

Потеря способности к гидратации объясняется утратой бел­ками нативных свойств, важнейшим из которых является выра­женная гидрофильность (большое сродство к воде), и связана с изменением конформации полипептидных цепей в белковой мо­лекуле в результате денатурации.

Набухание и растворимость белков в воде обусловлены нали­чием на поверхности белковых молекул большого числа гидро­фильных групп (СООН, ОН, NH 2), способных связывать значи­тельное количество воды.

Как уже отмечалось, способность разных нативных белков пи­щевых продуктов растворяться в каком-либо растворителе (воде, растворах нейтральных солей, слабых растворах щелочей, спирте и др.) используют для разделения или выделения определенной белковой фракции (для исследовательских или пищевых целей). Денатурированные белки такими различиями не обладают, они все одинаково нерастворимы и не способны набухать в воде. Ис­ключение из этого общего правила составляет фибриллярный коллаген мяса и рыбы, который после тепловой денатурации и деструкции до глютина способен растворяться в горячей воде.

В результате денатурации белки теряют биологическую ак­тивность. В растительном и животном сырье, используемом на предприятиях общественного питания, активность большинства белковых веществ сохраняется. Так, в результате деятельности ферментов плоды при хранении дозревают (а иногда и перезре­вают), картофель и корнеплоды прорастают. Особенно наглядно деятельность ферментов проявляется в клубнях картофеля при хранении их на свету: поверхность клубней приобретает зеленую окраску и горький вкус соответственно в результате синтеза хло­рофилла и образования ядовитого гликозида соланина.

В сыром мясе тканевые ферменты также находятся в активном состоянии, участвуя в автолизе мяса (послеубойном созревании). Это их свойство используют для практических целей. Полная инактивация кислой фосфатазы происходит при достижении температуры в геометрическом центре мясного изделия 80 "С, что соответствует температуре пастеризации (отмиранию вегетатив­ных форм бактерий). При необходимости проверить достаточ­ность тепловой кулинарной обработки мясного изделия опреде­ляют наличие или отсутствие в нем активной кислой фосфатазы.

В нативном белке пептидные группы экранированы внешней гидратной оболочкой или находятся внутри белковой глобулы и таким образом защищены от внешних воздействий. При дена­турации белок теряет гидратную оболочку, что облегчает доступ пищеварительным ферментам желудочно-кишечного тракта к функциональным группам. Белок переваривается быстрее.

Кроме того, иногда ингибиторная функция белка исчезает после денатурации. Так, некоторые белки яйца отрицательно влияют на процесс пищеварения: авидин в кишечнике связывает биотин (витамин Н), который участвует в регуляции нервной си­стемы и нервно-рефлекторной деятельности; овомукоид угнетает действие трипсина (фермента поджелудочной железы). Именно поэтому белки сырого яйца не только плохо перевариваются, но и частично всасываются в непереваренном виде, что может вызвать аллергию, уменьшить усвояемость других компонентов пищи и ухудшить всасывание соединений кальция. При денатурации эти белки утрачивают свои антиферментные свойства.

При денатурации белок теряет гидратную оболочку, в резуль­тате чего многие функциональные группы и пептидные связи белковой молекулы оказываются на поверхности и белок стано­вится более реакционноспособным.

В результате тепловой денатурации белка происходит агреги­рование белковых молекул. Поскольку гидратная оболочка во­круг молекулы белка нарушается, отдельные молекулы белка со­единяются между собой в более крупные частицы и уже не могут держаться в растворе. Начинается процесс свертывания белков, в результате которого образуются новые молекулярные связи.

Взаимодействие денатурированных молекул белка в раство­рах и гелях протекает по-разному. В слабоконцентрированных белковых растворах при тепловой денатурации агрегация моле­кул белка происходит путем образования межмолекулярных свя­зей как прочных, например дисульфидных, так и слабых (но многочисленных) - водородных. В результате образуются круп­ные частицы. Дальнейшая агрегация частиц приводит к расслое­нию коллоидной системы, образованию хлопьев белка, выпа­дающих в осадок или всплывающих на поверхность жидкости, часто с образованием пены (например, выпадение в осадок хлопьев денатурированного лактоальбумина при кипячении мо­лока; образование хлопьев и пены из денатурирующих белков на поверхности мясных и рыбных бульонов). Концентрация белков в таких растворах не превышает 1 %.

В более концентрированных белковых растворах при денату­рации белков образуется сплошной гель, удерживающий всю во­ду, содержащуюся в коллоидной системе. В результате агрегации денатурированных молекул белка образуется структурированная белковая система. Денатурация белков в концентрированных растворах с образованием сплошного геля происходит при теп­ловой обработке мяса, рыбы (белки саркоплазмы), куриных яиц и разных смесей на их основе. Точные концентрации белков, при которых их растворы в результате нагревания образуют сплош­ной гель, неизвестны. Учитывая, что способность к гелеобразованию у белков зависит от конфигурации (асимметрии) молекул и характера образующихся при этом межмолекулярных связей, надо полагать, что для разных белков указанные концентрации различны.

Например, для приготовления омлетов к яичному меланжу добавляют 38...75 % молока. Нижние пределы относятся к омле­там жареным, верхние - к вареным на пару. Для приготовления омлетов из яичного белка, используемых в диетическом пита­нии, молоко добавляют в количестве 40 % независимо от спосо­ба тепловой обработки, так как в белке яйца концентрация бел­ков значительно ниже, чем в желтке.

Некоторые белки, представляющие собой более или менее обводненные гели, при денатурации уплотняются, в результате чего происходит их дегидратация с отделением жидкости в окру­жающую среду. Белковый гель, подвергшийся нагреванию, как правило, характеризуется меньшим объемом, массой, пластич­ностью, повышенной механической прочностью и большей упругостью по сравнению с исходным гелем нативных белков. Подобные изменения белков наблюдаются при тепловой обра­ботке мяса, рыбы (белки миофибрилл), варке круп, бобовых, макаронных изделий, выпечке изделий из теста.

Гелями и студнями называются твердообразные нетекучие структурированные системы, образовавшиеся в результате дей­ствия молекулярных сил сцепления между коллоидными части­цами или макромолекулами полимеров. Ячейки пространствен­ных сеток гелей и студней обычно заполнены растворителем.

Таким образом, гели представляют собой коллоидные сис­темы или растворы высокомолекулярных соединений (ВМС), утратившие текучесть из-за возникновения в них определенных внутренних структур в виде пространственного сетчатого кар­каса, ячейки которого заполнены дисперсионной средой. Поскольку заключенная в ячейках дисперсионная среда при этом теряет свою подвижность, ее называют иммобилизированной.

Гели весьма широко распространены в природе: к ним отно­сятся многие строительные материалы (бетоны, цементы, гли­нистые суспензии), грунты, некоторые минералы (агат, опал), различные пищевые продукты (мука, тесто, хлеб, желе, марме­лад, студень), желатин, каучук, ткани живых организмов и мно­гие другие материалы живой и неживой природы.

В зависимости от концентрации дисперсионной среды гели принято подразделять на лиогели, коагели и ксерогели (аэрогели).

Богатые жидкостью гели, содержащие мало сухого вещества (до 1...2 %), называют диогелями. К типичным диогелям относят­ся кисель, студень (холодец), простокваша, растворы мыл и др.

Студенистые осадки, получаемые в процессе коагуляции некоторых гидрофобных золей, а также хлопьевидные осадки, образующиеся при высаливании растворов ВМС, называются коагелями. Содержание сухого вещества в коагелях достигает 80 %. Однако очень бедные жидкостью хлопья и микрокристал­лические порошки, образующиеся при коагуляции типичных гидрофобных коллоидов (гидрозолей золота, серебра, платины, сульфидов) к коагелям не относятся.

Бедные жидкостью или совсем сухие гели называются ксеро-гелями. Примерами ксерогелей могут служить сухой листовой желатин, столярный клей в плитках, крахмал, каучук. К слож­ным ксерогелям относят многие пищевые продукты (муку, суха­ри, печенье). Высокопористые ксерогели называют также аэро­гелями, поскольку в них дисперсионной средой служит воздух. К аэрогелям относят многие сорбенты (силикагель), твердые катализаторы химических реакций.

В зависимости от природы дисперсной фазы и по способно­сти к набуханию принято различать гели хрупкие и эластичные. Эластичные гели мы будем называть студнями.

Классификация белков. По форме молекул белки можно разделить на две большие группы – глобулярные (имеют сферическую форму) и фибриллярные (удлиненной формы). Так, глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин. Фибриллярные белки – кератин, коллаген, миозин и др. (рис.)

Белки, образованные только аминокислотами, называются простыми . Сложными являются белки, имеющие в своем составе компонент неаминокислотной природы. Это могут быть ионы металлов (Fe, Zn, Mg, Mn), липиды, нуклеотиды, сахара и др. Простыми белками являются сывороточный альбумин крови, фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются липопротеины и гликопротеины (например, иммуноглобулины), а также большинство ферментов.

Денатурация и ренатурация белков . Одно из основных свойств белков - спосо­бность изменять свою структуру и свойства под влиянием различных факторов (действие концентрированных кислот и щелочей, высокая температура и др.). Процесс нарушения природной конформации белков под влия­ни­ем ка­ких-ли­бо фак­то­ров без нарушения первичной структуры называе­тся денатурацией (от лат. де - приставка, означаю­щая потерю, и натура - природные свойства) (рис.). Из­ме­нение струк­ту­ры белка происходит вслед­ст­вие раз­ры­ва во­до­род­ных и ион­ных свя­зей, стабилизирующих пространственные структуры. При денатурации могут утрачиваться четвертичная, третичная и даже вторичная структура. Денатурация сопровождается потерей биологической активности белка. При этом наблюдается уменьшение ра­створимости белка, изменение формы и размеров молекул, поте­ря ферментативной активности и т.д. Денатурирующими агентами являются: высокая температура, кислоты и щелочи, мочевина, спирты, фенол, хлорамин, соли тяжелых металлов и др. Так, соли тяжелых металлов (кадмия, ртути и др.) при взаимодействии с белками образуют нерастворимые соединения, и белки выпадают в осадок.

Как правило, денатурация имеет необратимый хара­ктер. Хотя на первых ее стадиях, при условии пре­кращения действия повреждающих факторов, белок может восстановить свое первоначальное состояние. Это явле­ние называется ренатурацией (от лат. ре - пристав­ка, обозначающая возобновление). В организмах обычно наблюдается частичная обратимая денатурация белков.

Способность белков к обратимому изменению своей структуры в ответ на действие фи­зических и химических факторов лежит в основе важнейшего свой­ства всех живых систем - раздра­жимости .

Под влиянием некоторых факторов (воздействие формалина, спирта, щелочей и др.) может происходит разрушение пер­вич­ной струк­ту­ры. Процесс разрушения первичной структуры белков, на­зываемый деструкцией (от лат. де - и структура - строение), всегда необратимый.



Явление денатурации часто используется в биологических исследованиях и в медицине. При определении в биологическом материале низкомолекулярных соединений из раствора сначала удаляют белки. Для этого вызывают их денатурацию, осаждают или отфильтровывают.

В медицине денатурирующие агенты часто применяются для стерилизации медицинских инструментов и материалов в автоклавах (здесь денатурирующий агент – высокая температура). Их используют также в качестве антисептиков (спирт, фенол, хлорамин и др.) для очистки загрязненных материалов и поверхностей. То же происходит при обеззараживании ран, ссадин, царапин раствором йода или спиртом. На денатурации белков основано применение мышьяковистого ангидрида в стоматологической практике при лечении пульпита.

Функ­ции бел­ков. Большое разнообразие белков позволяет им выполнять в живом организме множество различных функций, как структурных, так и метаболических.

Структурная. Белки входят в состав всех биологических мембран и органоидов клетки. Преимуще­ственно из белков состоят хрящи, сухожилия. В их состав входит белок коллаген . Кератин – компонент перьев, волос, ногтей, когтей, рогов, копыт у высших жи­вотных. Эластин является компонентом связок, стенок кровеносных сосудов.

Каталитическая (фермента­тивная). Белковые молекулы ферментов способны ускорять течение биохимических реакций в клетках живых организмов в сотни миллионов раз. Ферменты участвуют как в процессах синтеза, так и распада веществ. Они обеспечивают рас­щепление питательных веществ в пищеварительном тракте, фикса­цию углерода при фотосинтезе и т.д.

Механизм действия ферментов объясняет теория активного цен­тра . Согласно ей, в молекуле каждого фермента имеется один или более участков, в которых происходит тесный контакт меж­ду молекулами фермента и спе­цифического вещества - субстрата (рис.). Активным центром выступает функциональная группа (напри­мер, ОН-группа серина), отдельная аминокислота либо сочетание не­скольких (в среднем от 3 до 12), расположенных в определенном по­рядке аминокислотных остатков. Форма и химическое строение ак­тивного центра таковы, что с ним могут связываться только опреде­ленные субстраты в силу точного соответствия их простран­ственных структур (как ключ и замок).

Молекула фермента вызывает ослаб­ление определенных химических связей субстрата, и ката­лизируемая реакция происходит с меньшими начальными затратами энер­гии, а следовательно, с намного большей скоростью. Ферменты уско­ряют ход реакции без изменения ее об­щего результата за счет снижения энер­гии активации , т.е. в их присутствии затрачивается значительно меньше энергии для придания молекулам реакционной способности.

На заключительном этапе хими­ческой реакции фермент-субстрат­ный комплекс распадается с образо­ванием конечных продуктов и сво­бодного фермента, который сохраняет исходную структуру и свойства. Освободившийся при этом активный центр может при­нимать следующие новые молекулы субстрата. Именно поэтому ферменты требуются в крайне низких концентрациях.

Некоторые ферменты, помимо активного центра, имеют один или несколько регуляторных центров. С этими участками могут связывать­ся молекулы, регулирующие актив­ность фермента. Они носят назва­ние активаторов (от лат. активус - деятельностный).

Молекулы некоторых веществ, взаимодействуя с ферментом, снижают или блокиру­ют его активность (рис.). Та­кие вещества называются ингиби­торами (от лат. ингибео – сдерживаю, останавливаю) . Например, многие лекарственные препараты природного или синтетического происхождения являются ингибиторами определенных ферментов. Кроме того, в основе действия некоторых токсических веществ лежит ингибирование активного центра ферментов.

Транспортная. Многие белки способны присоединять и перено­сить различные вещества. Гемоглобин связывает и пере­носит кислород и углекислый газ. Альбуми­ны крови транспортируют жирные кислоты, глобулины - ионы метал­лов и гормоны. Молекулы белков, входящие в со­став цитоплазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Сократительная (или двигательная). Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Так, актин и миозин – обеспечивают работу мышц и немышечные внутриклеточные сокращения. Белок тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

Регуляторная . Некоторые пептиды и белки являются гормо­нами. Они влияют на различные физиологические процессы. Например, инсулин регулирует содержание глюкозы в крови. Глюкагон регулирует расщепление гликогена до глюкозы, повышая ее содержание в крови.

Сигнальная. Некоторые бел­ки клеточных мемб­ран способны изменять свою структуру в ответ на действие фак­торов внешней среды. Так проис­ходит прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром - светочувствительный белок, регулирующий фотоперио­дическую реакцию растений, и onсин - составная часть пигмента родопсина, находящегося в клетках сетчатки глаза.

Защитная. Специфические белки предохраняют организм от вторжения чужеродных организмов и от повреждений. Так в от­вет на про­ник­но­ве­ние чу­же­род­ных тел - ан­ти­ге­нов - в клет­ке вы­ра­ба­ты­ва­ют­­­ся ан­ти­те­ла - осо­бые бел­ки, на­зы­вае­мые им­му­­но­­гло­бу­ли­на­ми, ко­то­рые обес­пе­чи­ва­ют им­­­му­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ни­тет. Интерфероны защищают организм от вирусной инфекции. Фибриноген , тромбопластин и тромбин участвуют в свертывании крови и предотвращении кровопотери.

Токсическая. Многие живые существа в качестве собственной защиты выделяют белки, называемые токсинами , которые в большинстве случаев являются ядами для других организмов. Токсины синтезируются в организме некоторых змей, лягушек, на­се­­ко­мых, гри­бов, рас­те­ний, бактерий. В свою очередь, некоторые организмы способны вырабатывать антитоксины , которые подавляют действие этих ядов.

Энергетическая. Белки могут служить источником энергии в клетке (после гидролиза). При пол­ном окис­ле­нии 1 г бел­ка вы­де­ля­ет­ся 17,6 кДж энер­гии. Белки расходуются на энергетичес­кие нужды в крайних случаях, ког­да исчерпаны запасы уг­леводов и жиров.

С белками могут взаимодействовать некоторые вещества и подавлять их функции. Такие вещества называются ингибиторами. Ингибиторами белковых функций являются многие яды. Так, например, ингибиторами белков-рецепторов постсинаптической мембраны, которые связываются с медиатором ацетилхолином при передаче нервного импульса в синапсах, являются мускарин (токсин мукора) и никотин . При этом нарушается проведение нервного импульса. Подобное действие оказывает также атропин – вещество, содержащееся в растениях красавки и белены. Атропин является ингибитором М-холинорецепторов. Учитывая, что связывание ацетилхолина с М-холинорецепторами вызывает сокращение многих гладких мышц, атропин используется как лекарственное средство, снимающее их спазм (спазмолитик). Однако при передозировке атропином могут наблюдаться двигательное и психическое возбуждение, галлюцинации, признаки понижения тонуса гладких мышц радужной оболочки глаз, бронхов, органов брюшной полости. Такой же эффект наблюдается при употреблении отваров белены (отсюда поговорка «белены объелся».

s1. Что общего и чем отличаются процессы денатурации и деструкции? 2. Чем обусловлено разнообразие свойств белков? 3 . Каковы основные биологические функции белков? 4. В чем состоит защитная функция белков? 5. Чем определяется двигательная функция белков? 6. Что такое ферменты? Почему без участия ферментов протекание большинства биохимических процессов в клетке было бы невозможным?

Белки и их функции.

Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

Структура белков.

Выделяют несколько уровней:

- Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

- Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

- Третичная структура – образование спиралиевого клубка.

Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
- Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

Денатурация белка.

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

Функции белков.

Каталитическая.

В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

Структурная.

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная.

  1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
  1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
  1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
Регуляторная.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

Транспортная.

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

Рецепторная.

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

Строительная.

Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

Энергетическая.

Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Моторная (двигательная).

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

Немного видео для понимания о белках:

Похожие статьи